
(a)
Find the change in effective stress
(a)

Answer to Problem 9.4P
The change in effective stress at point C when the water table drops by 2 m is
Explanation of Solution
Given information:
The thickness
The thickness
The thickness
The void ratio (e) of soil in the first layer is 0.7.
The specific gravity
The void ratio (e) of soil in the second layer is 0.55.
The depth (h) of water table drop is 2 m.
Calculation:
Determine the dry unit weight
Here,
Take the unit weight of the water as
Substitute 2.69 for
Determine the dry unit weight
Substitute 2.7 for
Determine the saturated unit weight
Substitute
Calculate the total stress at point C (13 m) using the relation.
Substitute
Calculate the pore water pressure at point C (13 m) using the relation.
Substitute
Calculate the effective stress at point C (13 m) using the relation.
Substitute
Water table drops by 2 m:
Calculate the total stress at point C when the water level drops by 2 m using the relation.
Substitute
Calculate the pore water pressure at point C when the water table drops by 2 m using the relation.
Substitute
Calculate the effective stress at point C when the water table drops by 2 m using the relation.
Substitute
Determine the change in effective stress when the water level drops by 2 m from the original position using the relation;
Substitute
Thus, the change in effective stress at point C when the water table drops by 2 m is
(b)
The change in effective stress
(b)

Answer to Problem 9.4P
The change in effective stress at point C rises to the surface up to point A is
Explanation of Solution
Given information:
The thickness
The thickness
The thickness
The void ratio (e) of soil in the first layer is 0.7.
The specific gravity
The void ratio (e) of soil in the second layer is 0.55.
Calculation:
Determine the saturated unit weight
Substitute
Calculate the total stress at point C (13 m) using the relation.
Substitute
Calculate the pore water pressure at point C (13 m) using the relation.
Substitute
Calculate the effective stress at point C (13 m) using the relation.
Substitute
Water table rises to the surface up to point A:
Determine the change in effective stress when the water table rises to the surface up to point A using the relation;
Substitute
Thus, the change in effective stress at point C rises to the surface up to point A is
(c)
Find the change in effective stress
(c)

Answer to Problem 9.4P
The change in effective stress at point C when the water level rises 3 m above point A due to flooding is
Explanation of Solution
Given information:
The thickness
The thickness
The thickness
The void ratio (e) of soil in the first layer is 0.7.
The specific gravity
The depth (h) of water rises above point A is 3.0 m.
Calculation:
Calculate the total stress at point C (16 m) using the relation.
Substitute
Calculate the pore water pressure at point C (16 m) using the relation.
Substitute
Calculate the effective stress at point C (16 m) using the relation.
Substitute
Water level rises 3 m above point A due to flooding:
Determine the change in effective stress when the water level rises 3 m above point A due to flooding using the relation;
Substitute
Thus, the change in effective stress at point C when the water level rises 3 m above point A due to flooding is
Want to see more full solutions like this?
Chapter 9 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
- Briefly describe which is more important, a resume or a cover letter?Why? What is the purpose of the resume? What is the purpose of thecover letter?arrow_forwardA cylindrical container of internal diameter and height H =200 mm is filled with concrete asshown in the figure below. Beginning at room temperature (T = 20oC), the temperature isdecreased until the concrete develops internal tensile stress that may results in crack (as shown inthe figure on the right below). This is due to the thermal shrinkage of the concrete and strongadhesion between the concrete and the walls of the container. D = 100 mmDetermine the temperature at which the concrete develops a tensile crack.Hint: Assume that the concrete remains linearly elastic until failure.Information about concrete:E = 30 GPa (Young’s Modulus)ν = 0.2 (Poisson’s Ratio)α = 12 ·10-6mm/mm/ oC (Coefficient of thermal expansion)(σt)max = 3 MPa (tensile strength)arrow_forwardI will rate, thanks!arrow_forward
- 1- Present worth analysis An Environmental engineer is considering two materials for use in a sustainable building. All estimates are made below. (a) Which should be selected on the basis of a present worth comparison at an interest rate of 12% per year? (b) At what first cost for the material not selected above will it become the more economical alternative? يفكر مهندس بيئة في الاختيار بين مادتين لاستخدامهما في انشاء مبنى مستدام كافة البيانات الاقتصادية الخاصة بالمادتين مذكورة في الجدول ادناه. (أ) أي المادتين ستختار على أساس مقارنة القيمة الحالية ) present worth analysis) اذا كان معدل الفائدة 12% سنويًا؟ (ب) كم يجب ان تصبح الكلفة الاولية رأس المال) للمادة غير المختارة أعلاه لتصبح البديل الافضل اقتصاديا؟ Material A First Cost 15000 Maintenance cost 9000 Salvage value 2000 Life 5 Material B 35000 7000 20000 5 2- IRR analysis A manufacturer of hydraulic equipment is trying to determine whether it should use monoflange double block and bleed (DBB) valves or a multi-valve system (MVS) for…arrow_forwardModels of Traffic Flow (Section 5.4) 5.7 An observer has determined that the time headways between successive vehicles on a section of highway are exponentially distributed and that 65% of the headways between vehicles are 9 seconds or greater. If the observer decides to count traffic in 30- second time intervals, estimate the probability of the observer counting exactly four vehicles in an interval. 5.8 At a specified point on a highway vehicles arearrow_forward7.2 An intersection has a four-timing-stage signal with the movements allowed in each timing stage and corresponding analysis and saturation flow rates shown in Table 7.7. Calculate the sum of the flow ratios for the critical lane groups.arrow_forward
- 5.27 At a parking lot, vehicles arrive according to a Poisson process and are processed (parking fee collected) at a uniform deterministic rate at a single station. The mean arrival rate is 4.2 veh/min and the processing rate is 5 veh/min. Determine the average length of queue, the average time spent in the system, and the average waiting time in the queue. 5.28 Consider the parking lot and conditions described in Problem 5.27. If the rate at which vehicles are processed became exponentially distributed (instead of deterministic) with a mean processing rate of 5 veh/min, what would be the average length of queue, the average time spent in the system, and the average waiting time in the queue?arrow_forwardDetermine the heel and toe stresses and the factor of safeties for sliding and overturning for the gravity dam section shown in the figure below for the following loading conditions: - Horizontal earthquake (Kh) = 0.1 - Normal uplift pressure with gallery drain working - Silt deposit up to 30 m height - No wave pressure and no ice pressure -Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³ - Submerged weight of silt = 0.9 Ton/m³ - Coefficient of friction = 0.65 and angle of repose = 25° Solve this question with the presence of gallery and without gallery., discuss the issue in both cases.... 144 m E 4m W 8m 6m 8m7m 120marrow_forwardOn page 1, in the first body paragraph ("In the United States…to be smart."), edit the Kaya source so the Name of Web Page is "Fast Facts 2020: Demographics", the correct Name of the webpage.arrow_forward
- 4.12 A 400 m vertical curve connects a -2.00% grade to a +4.00% grade. The P.I. is located at station 150 + 00 and elevation 60.00 m above sea level. A pipe is to be located at the low point on the vertical curve. The roadway at this point consists of two 3.6 m lanes with a normal crown slope of 2%. If the lowest point on the surface of the road- way must clear the pipe by 0.75 m, what is the station and maximum elevation of the pipe?arrow_forward=7.5 in., d1 = 1.5 in., b2 = 0.75 in., d2= 6.0 in., b3 = 3.0 in., and d3 = 2.0 in. Determine (a) the centroid location in inches from the bottom surface. Round off to two decimal places. M H b₂ y ... d₁ M by dy Xarrow_forwardVehicles arrive at a single park-entrance booth where a brochure is distributed. At 8 A.M., there are 20 vehicles in the queue and vehicles continue to arrive at the deterministic rate of λ(t) = 4.2 − 0.1t, where λ(t) is in vehicles per minute and t is in minutes after 8:00 A.M. From 8 A.M. until 8:10 A.M., vehicles are served at a constant deterministic rate of three per minute. Starting at 8:10 A.M., another brochure-distributing person is added and the brochure-service rate increases to six per minute (stillarrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



