General Chemistry
General Chemistry
7th Edition
ISBN: 9780073402758
Author: Chang, Raymond/ Goldsby
Publisher: McGraw-Hill College
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9.49QP

(a)

Interpretation Introduction

Interpretation: The resonance structure of HCO2- molecule and its corresponding formal charge should be found.

Concept Introduction: Sometimes the chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance.

In some molecules, there is possibility of more than one Lewis structure where all the structures are equally acceptable. One of the acceptable Lewis structures of these molecules is called resonance structure.

All the possible resonance structures are imaginary whereas the resonance hybrid is real.

Any of the possible structure does not exist as such like a stable real molecule. So it is not possible to isolate one resonance structure.

These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.

Structure with greater number of covalent bonds are more stable comparing to that with lower number of covalent bonds.

Structure which does not involve charge separation is more stable when comparing with structure having positive and negative charge separation.

While drawing resonance structure of a molecule some rules should be followed where the position, over whole charge and chemical framework remains intact. Also only π and nonbonding electron has been moved in all the three resonance structures

Formal charge:

A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all chemical bonds are shared equally among atoms.

This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.

The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.

Formal charge of an atom can be determined by the given formula.

Formalcharge(FC)=(no.ofvalenceelectroninatom)12(no.ofbondingelectrons)(no.ofnon-bondingelectrons)

(a)

Expert Solution
Check Mark

Answer to Problem 9.49QP

Resonance structure:

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  1

Formal charges:

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  2

Explanation of Solution

Determine the resonance structure for HCO2-.

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  3

In the case of chlorate ion, the chemical bonding of a molecule cannot be represented using a single Lewis structure. The chemical bonding are described by delocalization of electrons forming 2 possible resonance structures. Both the resonance structures are similar.In all the 2 resonance structures the position, over whole charge and chemical framework remains intact.

Structure of the chlorate ion chlorate ion is given below.

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  4

The formal charge of the given compound is calculated,

  • Hydrogen atom

Numberofvalenceelectron=1Numberofbondingelectron=2Numberofnon-bondingelectron=0

Substituting these values to the equation,

FC=1(12×2)=0

  • Carbon atom

Numberofvalenceelectron=4Numberofbondingelectron=8Numberofnon-bondingelectron=0

Substituting these values to the equation,

FC=4(12×8)=0

  • First oxygen atom having double bond with carbon

Numberofvalenceelectron=6Numberofbondingelectron=4Numberofnon-bondingelectron=4

Substituting these values to the equation,

FC=6(12×4)4=0

  • Oxygen atom which having single bond with carbon

Numberofvalenceelectron=6Numberofbondingelectron=2Numberofnon-bondingelectron=6

Substituting these values to the equation,

FC=6(12×2)6=1

(b)

Interpretation Introduction

Interpretation: The resonance structure of CH2NO2- molecule and its corresponding formal charge should be found.

Concept Introduction: Sometimes the chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance.

In some molecules, there is possibility of more than one Lewis structure where all the structures are equally acceptable. One of the acceptable Lewis structures of these molecules is called resonance structure.

All the possible resonance structures are imaginary whereas the resonance hybrid is real.

Any of the possible structure does not exist as such like a stable real molecule. So it is not possible to isolate one resonance structure.

These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.

Structure with greater number of covalent bonds are more stable comparing to that with lower number of covalent bonds.

Structure which does not involve charge separation is more stable when comparing with structure having positive and negative charge separation.

While drawing resonance structure of a molecule some rules should be followed where the position, over whole charge and chemical framework remains intact. Also only π and nonbonding electron has been moved in all the three resonance structures

Formal charge:

A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all chemical bonds are shared equally among atoms.

This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.

The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.

Formal charge of an atom can be determined by the given formula.

Formalcharge(FC)=(no.ofvalenceelectroninatom)12(no.ofbondingelectrons)(no.ofnon-bondingelectrons)

(b)

Expert Solution
Check Mark

Answer to Problem 9.49QP

Resonance structure:

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  5

Formal charges:

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  6

Explanation of Solution

Resonance structure of CH2NO2- is drawn below.

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  7

In the case of chlorate ion, the chemical bonding of a molecule cannot be represented using a single Lewis structure. The chemical bonding are described by delocalization of electrons forming 2 possible resonance structures. Both the resonance structures are similar. In all the 2 resonance structures the position, over whole charge and chemical framework remains intact.

Structure of the chlorate ion chlorate ion is given below.

General Chemistry, Chapter 9, Problem 9.49QP , additional homework tip  8

The formal charge of the given compound is calculated,

  • First hydrogen atom

Numberofvalenceelectron=1Numberofbondingelectron=2Numberofnon-bondingelectron=0

Substituting these values to the equation,

FC=1(12×2)=0

  • Second hydrogen atom

Numberofvalenceelectron=1Numberofbondingelectron=2Numberofnon-bondingelectron=0

Substituting these values to the equation,

FC=1(12×2)=0

  • Carbon atom

Numberofvalenceelectron=4Numberofbondingelectron=6Numberofnon-bondingelectron=0

Substituting these values to the equation,

FC=4(12×6)=+1

  • Nitrogen atom

Numberofvalenceelectron=5Numberofbondingelectron=8Numberofnon-bondingelectron=0

Substituting these values to the equation,

FC=5(12×8)=+1

  • First oxygen atom having double bond with nitrogen

Numberofvalenceelectron=5Numberofbondingelectron=4Numberofnon-bondingelectron=4

Substituting these values to the equation,

FC=6(12×4)4=0

  • Oxygen atom which having single bond with nitrogen

Numberofvalenceelectron=6Numberofbondingelectron=2Numberofnon-bondingelectron=6

Substituting these values to the equation,

FC=6(12×2)6=1

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 9 Solutions

General Chemistry

Ch. 9.6 - Prob. 1RCCh. 9.7 - Prob. 1PECh. 9.7 - Prob. 2PECh. 9.7 - Prob. 1RCCh. 9.8 - Prob. 1PECh. 9.8 - Prob. 1RCCh. 9.9 - Practice Exercise Draw the Lewis structure for...Ch. 9.9 - Prob. 2PECh. 9.9 - Prob. 3PECh. 9.9 - Prob. 4PECh. 9.9 - Prob. 1RCCh. 9.10 - Prob. 1PECh. 9.10 - Prob. 1RCCh. 9 - Prob. 9.1QPCh. 9 - 9.2 Use the second member of each group from Group...Ch. 9 - Prob. 9.3QPCh. 9 - Prob. 9.4QPCh. 9 - Prob. 9.5QPCh. 9 - Prob. 9.6QPCh. 9 - Prob. 9.7QPCh. 9 - Prob. 9.8QPCh. 9 - Prob. 9.9QPCh. 9 - Prob. 9.10QPCh. 9 - Prob. 9.11QPCh. 9 - Prob. 9.13QPCh. 9 - Prob. 9.14QPCh. 9 - Prob. 9.15QPCh. 9 - Prob. 9.16QPCh. 9 - Prob. 9.17QPCh. 9 - Prob. 9.18QPCh. 9 - Prob. 9.19QPCh. 9 - Prob. 9.20QPCh. 9 - Prob. 9.21QPCh. 9 - 9.22 Explain how the lattice energy of an ionic...Ch. 9 - Prob. 9.23QPCh. 9 - Prob. 9.24QPCh. 9 - Prob. 9.25QPCh. 9 - Prob. 9.26QPCh. 9 - Prob. 9.27QPCh. 9 - Prob. 9.28QPCh. 9 - Prob. 9.29QPCh. 9 - Prob. 9.30QPCh. 9 - Prob. 9.31QPCh. 9 - Prob. 9.33QPCh. 9 - 9.34 Arrange these bonds in order of increasing...Ch. 9 - Prob. 9.35QPCh. 9 - Prob. 9.36QPCh. 9 - Prob. 9.37QPCh. 9 - Prob. 9.38QPCh. 9 - Prob. 9.39QPCh. 9 - Prob. 9.40QPCh. 9 - Prob. 9.41QPCh. 9 - Prob. 9.42QPCh. 9 - Prob. 9.43QPCh. 9 - Prob. 9.44QPCh. 9 - Prob. 9.45QPCh. 9 - Prob. 9.46QPCh. 9 - Prob. 9.47QPCh. 9 - Prob. 9.48QPCh. 9 - Prob. 9.49QPCh. 9 - Prob. 9.50QPCh. 9 - Prob. 9.51QPCh. 9 - Prob. 9.52QPCh. 9 - Prob. 9.53QPCh. 9 - Prob. 9.54QPCh. 9 - Prob. 9.55QPCh. 9 - Prob. 9.56QPCh. 9 - Prob. 9.57QPCh. 9 - Prob. 9.58QPCh. 9 - Prob. 9.59QPCh. 9 - Prob. 9.60QPCh. 9 - Prob. 9.61QPCh. 9 - Prob. 9.62QPCh. 9 - Prob. 9.63QPCh. 9 - Prob. 9.64QPCh. 9 - Prob. 9.65QPCh. 9 - Prob. 9.66QPCh. 9 - Prob. 9.67QPCh. 9 - Prob. 9.68QPCh. 9 - Prob. 9.69QPCh. 9 - Prob. 9.70QPCh. 9 - Prob. 9.71QPCh. 9 - Prob. 9.72QPCh. 9 - Prob. 9.73QPCh. 9 - Prob. 9.74QPCh. 9 - Prob. 9.75QPCh. 9 - Prob. 9.76QPCh. 9 - Prob. 9.77QPCh. 9 - Prob. 9.78QPCh. 9 - Prob. 9.79QPCh. 9 - Prob. 9.80QPCh. 9 - 9.81 Draw reasonable resonance structures for...Ch. 9 - Prob. 9.82QPCh. 9 - Prob. 9.83QPCh. 9 - Prob. 9.84QPCh. 9 - Prob. 9.85QPCh. 9 - Prob. 9.86QPCh. 9 - Prob. 9.87QPCh. 9 - Prob. 9.88QPCh. 9 - Prob. 9.89QPCh. 9 - Prob. 9.90QPCh. 9 - Prob. 9.91QPCh. 9 - Prob. 9.92QPCh. 9 - Prob. 9.93QPCh. 9 - Prob. 9.94QPCh. 9 - Prob. 9.95QPCh. 9 - Prob. 9.96QPCh. 9 - Prob. 9.97QPCh. 9 - Prob. 9.98QPCh. 9 - Prob. 9.99QPCh. 9 - Prob. 9.100QPCh. 9 - Prob. 9.101QPCh. 9 - Prob. 9.102QPCh. 9 - Prob. 9.103QPCh. 9 - Prob. 9.104QPCh. 9 - Prob. 9.105QPCh. 9 - Prob. 9.106QPCh. 9 - Prob. 9.107QPCh. 9 - Prob. 9.108QPCh. 9 - 9.109 Among the common inhaled anesthetics...Ch. 9 - 9.110 Industrially, ammonia is synthesized by the...Ch. 9 - Prob. 9.111QPCh. 9 - Prob. 9.112QPCh. 9 - Prob. 9.113SPCh. 9 - Prob. 9.114SPCh. 9 - Prob. 9.115SPCh. 9 - Prob. 9.116SPCh. 9 - Prob. 9.117SPCh. 9 - Prob. 9.118SP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY