Concept explainers
(a)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(b)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(c)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(d)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(e)
Interpretation:
The results are to be compared with those of exercise
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
The slope of the plot of energy versus wavelength for the Rayleigh-Jeans law is given by a rearrangement of equation

Answer to Problem 9.30E
The values of slope of the plot of energy versus wavelength from Rayleigh-Jeans law is similar to that of Planck’s radiation distribution law at temperature and wavelength
Explanation of Solution
On comparing the results from exercise
The values of slope of the plot of energy versus wavelength from Rayleigh-Jeans law is similar to that of Planck’s radiation distribution law at temperature and wavelength
(f)
Interpretation:
The temperatures and spectral regions at which the Rayleigh-Jeans law is close to Planck’s law are to be identified.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
The slope of the plot of energy versus wavelength for the Rayleigh-Jeans law is given by,

Answer to Problem 9.30E
At higher temperatures and longer wavelengths, the Rayleigh-Jeans law is close to Planck’s law.
Explanation of Solution
On comparing the results from exercise
At higher temperatures and longer wavelengths the Rayleigh-Jeans law is close to Planck’s law.
Want to see more full solutions like this?
Chapter 9 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- III O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forward
- What is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forwardSelect the major product of the following reaction. Br Br₂, light D Br Br Br Brarrow_forward
- Select all molecules which are chiral. Brarrow_forwardUse the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




