EBK SYSTEM DYNAMICS
EBK SYSTEM DYNAMICS
3rd Edition
ISBN: 9780100254961
Author: Palm
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9.28P
To determine

The expressions for the bandwidths of the circuits as shown in figures 1 and 2.

Expert Solution & Answer
Check Mark

Answer to Problem 9.28P

The expressions for the bandwidths are:

For circuit in figure 1, (0,131R2C21)

For circuit in figure 2,

(0,13(2G1)(1R2C21))

Explanation of Solution

Given:

EBK SYSTEM DYNAMICS, Chapter 9, Problem 9.28P , additional homework tip  1 The circuits are as shown below: EBK SYSTEM DYNAMICS, Chapter 9, Problem 9.28P , additional homework tip  2

Concept Used:

  1. Kirchhoff’s current and voltage laws are employed for finding the circuit equations.
  2. The bandwidth of a system having transfer function as T(ω)=M(ω)ϕ(ω), is:

(ω1,ω2) such that M(ω1)Mpeak2M(ω2).

Calculation:

For the circuit as shown in figure 1, on applying Kirchhoff’s voltage law:

v1=i3R+v0i3=v1v0R

And the current i3 can be expressed as:

i3=Cdv0dt

Thus,

i3=v1v0RCdv0dt=v1v0R

On taking Laplace transform of this, we get

Cdv0dt=v1v0RRCsV0(s)=V1(s)V0(s)V0(s)V1(s)=1(1+RCs) (1)

Also, for the circuit in figure 1, on applying Kirchhoff’s current law:

i1=i2+i3vsv1R=Cdv1dt+Cdv0dt

On taking the Laplace transform of this, we get

vsv1R=Cdv1dt+Cdv0dtVs(s)V1(s)=sRC(V1(s)+V0(s))Vs(s)sRCV0(s)=(sRC+1)V1(s)V1(s)=(Vs(s)sRCV0(s)(sRC+1)) (2)

Thus, from equation (1) and (2), we have

V0(s)=V1(s)(1+RCs)V0(s)=Vs(s)sRCV0(s)(sRC+1)2V0(s)((sRC+1)2+sRC)=Vs(s)V0(s)Vs(s)=1R2C2s2+3RCs+1

This is the transfer function of the given circuit of figure 1.

Thus, the magnitude for this function is:

M(ω)=1(1R2C2)2+(3RCω)2

And the peak value for this magnitude occurs at ω=0, that is

Mpeak=1(1R2C2)

Thus, lower bound for the bandwidth is ω1=0 and the upper bound ω2 is:

M(ω2)Mpeak2M2(ω2)Mpeak221(1R2C2)2+(3RCω2)212(1R2C2)(1R2C2)2+(3RCω2)22(1R2C2)(3RCω2)2(1R2C2)ω2131R2C21

Therefore, the bandwidth of the circuit is:

(0,131R2C21)

Similarly, for the circuit shown in figure 2, we have

V0(s)Vs(s)=GR2C2s2+2RCs+1

Thus, the magnitude for this function is:

M(ω)=G(1R2C2)2+(2RCω)2

And the peak value for this magnitude occurs at ω=0, that is

Mpeak=G(1R2C2)

Thus, lower bound for the bandwidth is ω1=0 and the upper bound ω2 is:

M(ω2)Mpeak2M2(ω2)Mpeak221(1R2C2)2+(2RCω2)2G2(1R2C2)(1R2C2)2+(2RCω2)22G(1R2C2)(3RCω2)2(2G1)(1R2C2)ω213(2G1)(1R2C21)

Therefore, the bandwidth of this circuit is:

(0,13(2G1)(1R2C21))

Conclusion:

The expressions for the bandwidths are:

For circuit in figure 1, (0,131R2C21)

For circuit in figure 2,

(0,13(2G1)(1R2C21))

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The sketch below gives some details of the human heart at rest. What is the total power requirement (work/time) for an artificial heart pump if we use a safety factor of 5 to allow for inefficiencies, the need to operate the heart under stress, etc.? Assume blood has the properties of water. p pressure above atmosphere blood going to the lungs for a fresh charge of oxygen p = 2.9 kPa 25v pulmonary artery d = 25mm fresh oxygenated blood from the lungs p = 1.0 kPa vena cava d=30mm right auricle pulmonary vein, d = 28mm aorta, d=20mm spent blood returning from left auricle the body p = 0.66 kPa right left ventricle ventricle blood to feed the body, p 13 kPa normal blood flow = 90 ml/s
4- A horizontal Venturi meter is used to measure the flow rate of water through the piping system of 20 cm I.D, where the diameter of throat in the meter is d₂ = 10 cm. The pressure at inlet is 17.658 N/cm2 gauge and the vacuum pressure of 35 cm Hg at throat. Find the discharge of water. Take Cd = 0.98.
10
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY