
Concept explainers
(a)
Calculate the consolidation settlement inone year.
(a)

Answer to Problem 9.20CTP
The consolidation settlement in one year
Explanation of Solution
Given information:
The thickness of sand layer
The thickness of clay layer
The moisture content
The specific gravity of soil solids
The compression index
The coefficient of consolidation
The unit weight of sand is
The unit weight of fill
The depth of the compacted fill
Calculation:
Consider the unit weight of water
Calculate the initial void ratio
Substitute
Calculate the saturated unit weight
Substitute
At the middle of the clay layer:
Calculate the effective overburden pressure
Substitute
Calculate the increase in vertical pressure
Substitute
Calculate the final primary consolidation settlement
Substitute
Calculate the time factor
Substitute
Refer Table 9.3 “Variation of Time Factor with Degree of consolidation” in the Text Book.
Take the value of Uas
Take the value of Uas
Calculate the value of U for the value
Calculate the final consolidation settlement
Substitute
Therefore, the consolidation settlement in one year is
(b)
Plot the in situ variation of pore water pressure and effective stress with depth for the clay layer.
(b)

Explanation of Solution
Given information:
The thickness of sand layer
The thickness of clay layer
The moisture content
The specific gravity of soil solids
The compression index
The coefficient of consolidation
The unit weight of sand is
The unit weight of fill
The depth of the compacted fill
Calculation:
Calculate the total stress
Substitute
Calculate the pore water pressure
Substitute
Calculate the total stress
Substitute
Calculate the total stress
Substitute
Calculate the pore water pressure
Substitute
Calculate the total stress
Substitute
Show the variation of pore water pressure and effective stress with depth for the clay layer as in Figure 1.
(c)
Plot the variation of pore water pressure and effective stress with depth after on year.
(c)

Explanation of Solution
Given information:
The thickness of sand layer
The thickness of clay layer
The moisture content
The specific gravity of soil solids
The compression index
The coefficient of consolidation
The unit weight of sand is
The unit weight of fill
The depth of the compacted fill
Calculation:
Consider the degree of consolidation
Refer to part (a).
The time factor
Calculate the effective stress
Substitute
Calculate the pore water
Substitute
Calculate the ratio of height of soil to the maximum drainage depth as shown below.
Substitute
Refer Figure 9.20 “Variation of
Take the value of
Calculate the effective stress
Substitute
Calculate the pore water
Substitute
At the bottom of the clay layer, after one year:
Calculate the ratio of height of soil to the maximum drainage depth;
Substitute
Refer Figure 9.20 “Variation of
Take the value of
Calculate the effective stress
Substitute
Calculate the pore water
Substitute
Show the variation of the pore water pressure and the effective stress with depth as in Figure 1.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK FUNDAMENTALS OF GEOTECHNICAL ENGINE
- 1- Present worth analysis An Environmental engineer is considering two materials for use in a sustainable building. All estimates are made below. (a) Which should be selected on the basis of a present worth comparison at an interest rate of 12% per year? (b) At what first cost for the material not selected above will it become the more economical alternative? يفكر مهندس بيئة في الاختيار بين مادتين لاستخدامهما في انشاء مبنى مستدام كافة البيانات الاقتصادية الخاصة بالمادتين مذكورة في الجدول ادناه. (أ) أي المادتين ستختار على أساس مقارنة القيمة الحالية ) present worth analysis) اذا كان معدل الفائدة 12% سنويًا؟ (ب) كم يجب ان تصبح الكلفة الاولية رأس المال) للمادة غير المختارة أعلاه لتصبح البديل الافضل اقتصاديا؟ Material A First Cost 15000 Maintenance cost 9000 Salvage value 2000 Life 5 Material B 35000 7000 20000 5 2- IRR analysis A manufacturer of hydraulic equipment is trying to determine whether it should use monoflange double block and bleed (DBB) valves or a multi-valve system (MVS) for…arrow_forwardModels of Traffic Flow (Section 5.4) 5.7 An observer has determined that the time headways between successive vehicles on a section of highway are exponentially distributed and that 65% of the headways between vehicles are 9 seconds or greater. If the observer decides to count traffic in 30- second time intervals, estimate the probability of the observer counting exactly four vehicles in an interval. 5.8 At a specified point on a highway vehicles arearrow_forward7.2 An intersection has a four-timing-stage signal with the movements allowed in each timing stage and corresponding analysis and saturation flow rates shown in Table 7.7. Calculate the sum of the flow ratios for the critical lane groups.arrow_forward
- 5.27 At a parking lot, vehicles arrive according to a Poisson process and are processed (parking fee collected) at a uniform deterministic rate at a single station. The mean arrival rate is 4.2 veh/min and the processing rate is 5 veh/min. Determine the average length of queue, the average time spent in the system, and the average waiting time in the queue. 5.28 Consider the parking lot and conditions described in Problem 5.27. If the rate at which vehicles are processed became exponentially distributed (instead of deterministic) with a mean processing rate of 5 veh/min, what would be the average length of queue, the average time spent in the system, and the average waiting time in the queue?arrow_forwardDetermine the heel and toe stresses and the factor of safeties for sliding and overturning for the gravity dam section shown in the figure below for the following loading conditions: - Horizontal earthquake (Kh) = 0.1 - Normal uplift pressure with gallery drain working - Silt deposit up to 30 m height - No wave pressure and no ice pressure -Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³ - Submerged weight of silt = 0.9 Ton/m³ - Coefficient of friction = 0.65 and angle of repose = 25° Solve this question with the presence of gallery and without gallery., discuss the issue in both cases.... 144 m E 4m W 8m 6m 8m7m 120marrow_forwardOn page 1, in the first body paragraph ("In the United States…to be smart."), edit the Kaya source so the Name of Web Page is "Fast Facts 2020: Demographics", the correct Name of the webpage.arrow_forward
- 4.12 A 400 m vertical curve connects a -2.00% grade to a +4.00% grade. The P.I. is located at station 150 + 00 and elevation 60.00 m above sea level. A pipe is to be located at the low point on the vertical curve. The roadway at this point consists of two 3.6 m lanes with a normal crown slope of 2%. If the lowest point on the surface of the road- way must clear the pipe by 0.75 m, what is the station and maximum elevation of the pipe?arrow_forward=7.5 in., d1 = 1.5 in., b2 = 0.75 in., d2= 6.0 in., b3 = 3.0 in., and d3 = 2.0 in. Determine (a) the centroid location in inches from the bottom surface. Round off to two decimal places. M H b₂ y ... d₁ M by dy Xarrow_forwardVehicles arrive at a single park-entrance booth where a brochure is distributed. At 8 A.M., there are 20 vehicles in the queue and vehicles continue to arrive at the deterministic rate of λ(t) = 4.2 − 0.1t, where λ(t) is in vehicles per minute and t is in minutes after 8:00 A.M. From 8 A.M. until 8:10 A.M., vehicles are served at a constant deterministic rate of three per minute. Starting at 8:10 A.M., another brochure-distributing person is added and the brochure-service rate increases to six per minute (stillarrow_forward
- Vehicles arrive at a single park-entrance booth where a brochure is distributed. At 8 A.M., there are 20 vehicles in the queue and vehicles continue to arrive at the deterministic rate of λ(t) = 4.2 − 0.1t, where λ(t) is in vehicles per minute and t is in minutes after 8:00 A.M. From 8 A.M. until 8:10 A.M., vehicles are served at a constant deterministic rate of three per minute. Starting at 8:10 A.M., another brochure-distributing person is added and the brochure-service rate increases to six per minute (still at a single booth). Assuming D/D/1 queuing, determine the longest queue, the total delay from 8 A.M. until the queue dissipates; and the wait time of the 40th vehicle to arrive.arrow_forwardAt 8:00 A.M. there are 10 vehicles in a queue at a toll booth and vehicles are arriving at a rate of λ(t) = 6.9 − 0.2t. Beginning at 8 A.M., vehicles are being serviced at a rate of μ(t) = 2.1 + 0.3t [λ(t) and μ(t) are in vehicles per minute and t is in minutes after 8:00 A.M.]. Assuming D/D/1 queuing, what is the maximum queue length, and what would the total delay be from 8:00 A.M. until the queue clears?arrow_forwardIntroduction: Orifice and Free Flow Jet in Applied Fluid Mechanics' I need to introduction only for answerarrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



