
Concept explainers
Explanation of Solution
Modify the allocator to perform constant-time coalescing requires both a header and a footer for each block:
In the “Section 9.9.12 (mm.c)”, remove the red color text and add the highlighted lines which is represented in the below code. The modified “mm.c” file is as follows:
#define MAX(x, y) ((x) > (y)? (x) : (y))
/* Pack a size and allocated bit into a word */
#define PACK(size, alloc) ((size) | (alloc))
// Define a pack with size and allocated bit
#define PACK(size, alloc, prev_alloc) ((size) | (alloc) | (prev_alloc << 1))
/* Read and write a word at address p */
#define GET(p) (*(unsigned int *)(p))
/* Read the size and allocated fields from address p */
#define GET_SIZE(p) (GET(p) & ~0x7)
#define GET_ALLOC(p) (GET(p) & 0x1)
// Define allocated fields
#define GET_PREV_ALLOC(p) ((GET(p) >> 1) & 0x1)
/* Given block ptr bp, compute address of its header and footer */
#define HDRP(bp) ((char *)(bp) - WSIZE)
if ((heap_listp = mem_sbrk(4 * WSIZE)) == (void *)-1)
return -1;
PUT(heap_listp, 0); /* Alignment padding */
PUT(heap_listp + (1 * WSIZE), PACK(DSIZE, 1)); /* Prologue header */
PUT(heap_listp + (2 * WSIZE), PACK(DSIZE, 1)); /* Prologue footer */
PUT(heap_listp + (3 * WSIZE), PACK(0, 1)); /* Epilogue header */
// Call PUT() function for Prologue header
PUT(heap_listp + (1 * WSIZE), PACK(DSIZE, 1, 1)); /* Prologue header */
// Call PUT() function for Prologue footer
PUT(heap_listp + (2 * WSIZE), PACK(DSIZE, 1, 1));
// Call PUT() function for Epilogue header
PUT(heap_listp + (3 * WSIZE), PACK(0, 1, 1));
heap_listp += (2 * WSIZE);
/* $end mminit */
return NULL;
/* Adjust block size to include overhead and alignment reqs. */
if (size <= DSIZE)
asize = 2 * DSIZE;
else
asize = DSIZE * ((size + (DSIZE)+(DSIZE - 1)) / DSIZE);
// Check size to adjust block
if (size <= WSIZE)
// Assign size value
asize = DSIZE;
// Otherwise
else
// Compute size to add overhead and alignment requirements
asize = DSIZE * ((size + (WSIZE)+(DSIZE - 1)) / DSIZE);
/* Search the free list for a fit */
if ((bp = find_fit(asize)) != NULL) {
}
/* $begin mmfree */
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
// Call PUT() function with size and allocated bit
PUT(HDRP(bp), PACK(size, 0, GET_PREV_ALLOC(HDRP(bp))));
PUT(FTRP(bp), PACK(size, 0, GET_PREV_ALLOC(HDRP(bp))));
// Check allocated bit
if (GET_ALLOC(HDRP(NEXT_BLKP(bp))))
// Call PUT() function
PUT(HDRP(NEXT_BLKP(bp)), PACK(GET_SIZE(HDRP(NEXT_BLKP(bp))), 1, 0));
// Otherwise
else {
// Call PUT() function for HDRP
PUT(HDRP(NEXT_BLKP(bp)), PACK(GET_SIZE(HDRP(NEXT_BLKP(bp))), 0, 0));
// Call PUT() function for FTRP
PUT(FTRP(NEXT_BLKP(bp)), PACK(GET_SIZE(HDRP(NEXT_BLKP(bp))), 0, 0));
}
// Call coalesce() function to fill values
coalesce(bp);
}
/* $begin mmfree */
static void *coalesce(void *bp)
{
size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));
// Call GET_PREV_ALLOC() function and the return value is assign to prev_alloc
size_t prev_alloc = GET_PREV_ALLOC(HDRP(bp));
size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
size_t size = GET_SIZE(HDRP(bp));
else if (prev_alloc && !next_alloc) { /* Case 2 */
size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
// Call PUT() function for HDRP with PACK size
PUT(HDRP(bp), PACK(size, 0, 1));
// Call PUT() function for FTRP with PACK size
PUT(FTRP(bp), PACK(size, 0, 1));
}
else if (!prev_alloc && next_alloc)
{
/* Case 3 */
size += GET_SIZE(HDRP(PREV_BLKP(bp)));
PUT(FTRP(bp), PACK(size, 0));
PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
// Call PUT() function for HDRP with PACK size
PUT(FTRP(bp), PACK(size, 0, 1));
// Call PUT() function for FTRP with PACK size
PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0, 1));
bp = PREV_BLKP(bp);
}
else {
/* Case 4 */
size += GET_SIZE(HDRP(PREV_BLKP(bp))) +
GET_SIZE(FTRP(NEXT_BLKP(bp)));
PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));
// Call PUT() function for HDRP with PACK size
PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0, 1));
// Call PUT() function for FTRP with PACK size
PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0...

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
Computer Systems: A Programmer's Perspective Plus Mastering Engineering With Pearson Etext -- Access Card Package (3rd Edition)
- Write a function to compute a Monte Carlo estimate of the Beta(3, 3) cdf, and use the function to estimate F(x) for x = 0.1,0.2,...,0.9. Compare the estimates with the values returned by the pbeta function in R.arrow_forwardWrite a function to compute a Monte Carlo estimate of the Gamma(r = 3, λ = 2) cdf, and use the function to estimate F(x) for x = 0.2, 0.4, . . . , 2.0. Compare the estimates with the values returned by the pgamma function in R.arrow_forwardusing r languagearrow_forward
- using r languagearrow_forwardYou are given a class that processes purchases for an online store. The class receives calls to: • Retrieve the prices for items from a database • Record the sold items • Update the database • Refresh the webpage a. What architectural pattern is suitable for this scenario? Illustrate your answer by drawing a model for the solution, showing the method calls/events. b. Comment on how applying this pattern will impact the modifiability of the system. c. Draw a sequence diagram for the update operation.arrow_forwardThe images I have uploaded are the part 1 to 4 and questions below are continue on the questions uploaded 5. C++ Class Template with Method Stubs #pragma once #include <iostream> #include <string> #include <stdexcept> #include <vector> template <typename T> class HashTable { private: struct Entry { std::string key; T value; bool isOccupied; bool isDeleted; Entry() : key(""), value(), isOccupied(false), isDeleted(false) {} }; Entry* table; size_t capacity; size_t size; double loadFactorThreshold; size_t customHash(const std::string& key) const { size_t hash = 5381; for (char c : key) { hash = ((hash << 5) + hash) + c; } return hash; } size_t probe(const std::string& key, bool forInsert = false) const; void resize(); public: // Constructor HashTable(size_t initialCapacity = 101); // Big…arrow_forward
- this project is NOT for graded(marks) purposes, please help me with the introduction. give me answers for the project. i will include an image explaining everything about the project.arrow_forwardJava Graphics (Bonus In this lab, we'll be practicing what we learned about GUIs, and Mouse events. You will need to implement the following: A GUI with a drawing panel. We can click in this panel, and you will capture those clicks as a Point (see java.awt.Point) in a PointCollection class (you need to build this). The points need to be represented by circles. Below the drawing panel, you will need 5 buttons: O о о ○ An input button to register your mouse to the drawing panel. A show button to paint the points in your collection on the drawing panel. A button to shift all the points to the left by 50 pixels. The x position of the points is not allowed to go below zero. Another button to shift all the points to the right 50 pixels. " The x position of the points cannot go further than the You can implement this GUI in any way you choose. I suggest using the BorderLayout for a panel containing the buttons, and a GridLayout to hold the drawing panel and button panels. Regardless of how…arrow_forwardalso provide the number of moves(actions) made at state A and moves(actions) made state B. INCLUDE Java program required(this question is not graded)arrow_forward
- You are given a class that processes purchases for an online store. The class receives calls to: • Retrieve the prices for items from a database • Record the sold items • Update the database • Refresh the webpage a. What architectural pattern is suitable for this scenario? Illustrate your answer by drawing a model for the solution, showing the method calls/events. b. Comment on how applying this pattern will impact the modifiability of the system. c. Draw a sequence diagram for the update operation.arrow_forward2. The memory management has contiguous memory allocation, dynamic partitions, and paging. Compare the internal fragmentation and external fragmentation for these three approaches. [2 marks] 3. Suppose we have Logical address space = 24 = 16 (m = 4), Page size=2² =4 (n = 2), Physical address space = 26 = 64 (r = 6). Answer the following questions: [4 marks] 1) Total # of pages ? 2) Total # of frames ? 3) Number of bits to represent logical address? 4) Number of bits to represent offset ? 5) Number of bits to represent physical address? 6) Number of bits to represent a page number? 7) Number of bits to represent a frame number / 4. What is translation look-aside buffers (TLBS)? Why we need them to implement the page table? [2 marks] 5. Why we need shared pages for multiple processes? Give one example to show the benefits. [2 marks] 6. How to implement the virtual memory by using page out and page in? Explain with an example. [2 marks] 7. We have a reference string of referenced page…arrow_forwardGood morning, please solve this trying to follow this criteria. (use Keil) Abstract describing the requirements and goals of the assignment. List file with no errors or warnings. Brief description of your implementation design and code. Debugging screen shots for different scenarios with your reference and comments. Conclusion (and please give me the code without errors, make sure it is working)arrow_forward
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- New Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage



