Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 9, Problem 9.12P
Interpretation Introduction

Interpretation:

The power required by the compressor is to be calculated if heat exchanger is used and the result is to be compared with the system that operates without the heat exchanger. Also, the refrigerant circulation rate for the two cases needs to be compared.

Concept introduction:

Below shown diagram represents vapor-compression refrigeration cycle on a TS diagram which include four steps of the cycle. Line 12 shows a liquid which is evaporating at constant pressure and providing a means for heat absorption at constant low temperature. The vapor thus produced is then compressed to a higher pressure. It is then cooled and condensed at higher temperature by heat rejection. By an expansion process, the liquid from the condenser is returned to its original pressure. This process is carried out by throttling through a partly open valve. Due to the fluid friction in the valve there is pressure drop in this irreversible process.

The line 41 represents throttling process which occurs at constant enthalpy. The path of isentropic compression is shown by line 23' and the actual compression is shown by the line 23 where the direction of slope is in increasing enthalpy which reflects inherent irreversibility.

Introduction to Chemical Engineering Thermodynamics, Chapter 9, Problem 9.12P

The equations used to calculate the heat absorbed in evaporator and the heat rejected in condenser are:

|QC|=H2H1 ...... (1)

  |QH|=H3H4 ...... (2)

The work of compression is:

W=H3H2 ...... (3)

The coefficient of performance is:

ω=H2H1H3H2 ...... (4)

The rate of circulation of refrigerant, m˙ is determined from the rate of heat absorption in the evaporator given by the equation:

m˙=|Q˙C|H2H1 ...... (5)

For Carnot refrigeration cycle, highest possible value of ω is attained at the given values of TC and TH . Due to irreversible expansion in a throttle valve and irreversible compression in the vapor-compression cycle, lower values of ω is obtained.

Blurred answer
Students have asked these similar questions
Chemical Engineering Question
A steam boiler or steam generator is a device used to produce steam by transferring heat to water. In our case, the combustion chamber is fueled with propane (C3H8) at a flowrate of 50.0 mol/h in an excess air of 50%. Assume that both propane and air are fed at 25ºC and the combustion gases leave the chamber at 200ºC. Pressure can be assumed to be atmospheric.* Determine: 1. The heat obtained assuming complete combustion. Compare the results using elements or compounds 2. The steam flowrate that could be generated if the heat is directed to obtain superheated steam at 2 bar and 160ºC from saturated liquid water at this pressure solve
In a surface coating operation, a polymer (plastic) dissolved in liquid acetone is sprayed on a solid surface and a stream of hot air is then blown over the surface, vaporizing the acetone and leaving a residual polymer film of uniform thickness. Because environmental standards do not allow discharg- ing acetone into the atmosphere, a proposal to incinerate the stream is to be evaluated. The proposed process uses two parallel columns containing beds of solid particles. The air– acetone stream, which contains acetone and oxygen in stoichiometric proportion, enters one of the beds at 1500 mm Hg absolute at a rate of 1410 standard cubic meters per minute. The particles in the bed have been preheated and transfer heat to the gas. The mixture ignites when its temperature reaches 562 C, and combustion takes place rapidly and adiabatically. The combustion products then pass through and heat the particles in the second bed, cooling down to 350 C in the process. Period- ically the flow is…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The