Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.12CQ
To determine
Whether the larger net force always produce a larger change in the kinetic energy than a smaller net force or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Ch. 9 - Two objects have equal kinetic energies. How do...Ch. 9 - Your physical education teacher throws a baseball...Ch. 9 - Two objects are at rest on a frictionless surface....Ch. 9 - Rank an automobile dashboard, seat belt, and air...Ch. 9 - In a perfectly inelastic one-dimensional collision...Ch. 9 - A table-tennis ball is thrown at a stationary...Ch. 9 - A baseball bat of uniform density is cut at the...Ch. 9 - A cruise ship is moving at constant speed through...Ch. 9 - You are standing on a saucer-shaped sled at rest...Ch. 9 - Prob. 9.2OQ
Ch. 9 - A massive tractor is rolling down a country road....Ch. 9 - A 2-kg object moving to the right with a speed of...Ch. 9 - A 5-kg cart moving to the right with a speed of 6...Ch. 9 - A 57.0-g tennis ball is traveling straight at a...Ch. 9 - The momentum of an object is increased by a factor...Ch. 9 - The kinetic energy of an object is increased by a...Ch. 9 - If two particles have equal momenta, are their...Ch. 9 - If two particles have equal kinetic energies, are...Ch. 9 - A 10.0-g bullet is fired into a 200-g block of...Ch. 9 - Two particles of different mass start from rest....Ch. 9 - Two particles of different mass start from rest....Ch. 9 - A basketball is tossed up into the air, falls...Ch. 9 - A 3-kg object moving to the right on a...Ch. 9 - A ball is suspended by a string that is tied to a...Ch. 9 - A car of mass m traveling at speed v crashes into...Ch. 9 - A head-on, elastic collision occurs between two...Ch. 9 - An airbag in an automobile inflates when a...Ch. 9 - In golf, novice players are often advised to be...Ch. 9 - An open box slides across a frictionless, icy...Ch. 9 - While in motion, a pitched baseball carries...Ch. 9 - Prob. 9.5CQCh. 9 - A sharpshooter fires a rifle while standing with...Ch. 9 - Two students hold a large bed sheet vertically...Ch. 9 - A juggler juggles three balls in a continuous...Ch. 9 - (a) Does the center of mass of a rocket in free...Ch. 9 - On the subject of the following positions, state...Ch. 9 - Prob. 9.11CQCh. 9 - Prob. 9.12CQCh. 9 - A bomb, initially at rest, explodes into several...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - An object has a kinetic energy of 275 J and a...Ch. 9 - At one instant, a 17.5-kg sled is moving over a...Ch. 9 - A 3.00-kg particle has a velocity of...Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - A 45.0-kg girl is standing on a 150-kg plank. Both...Ch. 9 - A girl of mass mg is standing on a plank of mass...Ch. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - In research in cardiology and exercise physiology,...Ch. 9 - When you jump straight up as high as you can, what...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - A man claims that he can hold onto a 12.0-kg child...Ch. 9 - An estimated force-time curve for a baseball...Ch. 9 - Review. After a 0.300-kg rubber ball is dropped...Ch. 9 - A glider of mass m is free to slide along a...Ch. 9 - In a slow-pitch softball game, a 0.200-kg softball...Ch. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - A tennis player receives a shot with the ball...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Review. A force platform is a tool used to analyze...Ch. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - A 10.0-g bullet is fired into a stationary block...Ch. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Four railroad cars, each of mass 2.50 104 kg, are...Ch. 9 - A neutron in a nuclear reactor makes an elastic,...Ch. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - As shown in Figure P9.30, a bullet of mass m and...Ch. 9 - A 12.0-g wad of sticky clay is hurled horizontally...Ch. 9 - A wad of sticky clay of mass m is hurled...Ch. 9 - Prob. 9.33PCh. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - A 0.300-kg puck, initially at rest on a...Ch. 9 - Prob. 9.36PCh. 9 - An object of mass 3.00 kg, moving with an initial...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - A billiard ball moving at 5.00 m/s strikes a...Ch. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - An unstable atomic nucleus of mass 17.0 10-27 kg...Ch. 9 - The mass of the blue puck in Figure P9.44 is 20.0%...Ch. 9 - Prob. 9.45PCh. 9 - The mass of the Earth is 5.97 1024 kg, and the...Ch. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - A water molecule consists of an oxygen atom with...Ch. 9 - A 2.00-kg particle has a velocity (2.00. 3.00)...Ch. 9 - Consider a system of two particles in the xy...Ch. 9 - Romeo (77.0 kg) entertains Juliet (55.0 kg) by...Ch. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - A ball of mass 0.200 kg with a velocity of 1.50...Ch. 9 - Prob. 9.56PCh. 9 - A particle is suspended from a post on top of a...Ch. 9 - A 60.0-kg person bends his knees and then jumps...Ch. 9 - Figure P9.59a shows an overhead view of the...Ch. 9 - A model rocket engine has an average thrust of...Ch. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - Review. The first stage of a Saturn V space...Ch. 9 - A rocket for use in deep space is to be capable of...Ch. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - Prob. 9.65APCh. 9 - An amateur skater of mass M is trapped in the...Ch. 9 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Two particles with masses m and 3m are moving...Ch. 9 - Pursued by ferocious wolves, you are in a sleigh...Ch. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg...Ch. 9 - Prob. 9.78APCh. 9 - A 0.400-kg blue bead slides on a frictionless,...Ch. 9 - A small block of mass mt = 0.500 kg is released...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - A 75.0-kg firefighter slides down a pole while a...Ch. 9 - George of the Jungle, will mass m, swings on a...Ch. 9 - Review. A student performs a ballistic pendulum...Ch. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 9.88APCh. 9 - A 5.00-g bullet moving with an initial speed of i...Ch. 9 - Review. There are (one can say) three coequal...Ch. 9 - A 2.00-g particle moving at 8.00 m/s makes a...Ch. 9 - Prob. 9.92CPCh. 9 - Two particles with masses m and 3m are moving...Ch. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - On a horizontal air track, a glider of mass m...Ch. 9 - Review. A chain of length L and total mass M is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.25 m above where it started. Using conservation of energy, find a. the balls initial speed and b. the height of the ball when it has a speed of 2.5 m/s.arrow_forwardA projectile of mass 2 kg is fired with a speed of 20 m/s at an angle of 30 with respect to the horizontal. (a) Calculate the initial total energy of the projectile given that the reference point of zero gravitational potential energy at the launch position. (b) Calculate the kinetic energy at the highest vertical position of the projectile. (c) Calculate the gravitational potential energy at the highest vertical position. (d) Calculate the maximum height that the projectile reaches. Compare this result by solving the same problem using your knowledge of projectile motion.arrow_forwardCheck Your Understanding There is a second solution to the system of equations solved in this example (because the energy equation is quadratic): v1.f=-2.5m/s , v2.f=0 . This solution is unacceptable on physical grounds; what’s with it?arrow_forward
- Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller child hops off to jump straight down into the pool, the bigger child releases herself at the top of the frictionless slide. (i) Upon reaching the water, the kinetic energy of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal. (ii) Upon reaching the water, the speed of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal. (iii) During their motions from the platform to the water, the average acceleration of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal.arrow_forwardTwo people observe a leaf falling from a tree. One person is standing on a ladder and the other is on the ground. If each person were to compare the energy of the leaf observed, would each person find the following to be the same or different for the leaf, from the point where it falls off the tree to when it hits the ground: (a) the kinetic energy of the leaf; (b) the change in gravitational potential energy; (c) the final gravitational potential energy?arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forward
- Bullet 2 has twice the mass of bullet 1. Both are fired so that they have the same speed. If the kinetic energy of bullet 1 is K, is the kinetic energy of bullet 2 (a) 0.25K, (b) 0.5K, (c) 0.71K. (d) K, or (e) 2K?arrow_forwardEzra (m = 25.0 kg) has a tire swing and wants to swing as high as possible. He thinks that his best option is to run as fast as he can and jump onto the tire at full speed. The tire has a mass of 10.0 kg and hangs 3.75 m straight down from a tree branch. Ezra stands back 10.0 m and accelerates to a speed of 3.50 m /s before jumping onto the tire swing. a. How fast are Ezra and the tire moving immediately after he jumps onto the swing? b. How high does the tire travel above its initial height?arrow_forwardGive an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forward
- Review. In 1887 in Bridgeport, Connecticut, C. J. Belknap built the water slide shown in Figure P8.77. A rider on a small sled, of total mass 80.0 kg, pushed off to start at the top of the slide (point ) with a speed of 2.50 m/s. The chute was 9.76 m high at the top and 543 m long. Along its length, 72.5 small wheels made friction negligible. Upon leaving the chute horizon-tally at its bottom end (point ), the rider skimmed across the water of Long Island Sound for as much as 50 m, skipping along like a flat pebble, before at last coming to rest and swimming ashore, pulling his sled after him. (a) Find the speed of the sled and rider at point (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude of the friction force the water exerts on the sled. (c) Find the magnitude of the force the chute exerts on the sled at point (d) At point , the chute is horizontal but curving in the vertical plane. Assume its radius of curvature is 20.0 m. Find the force the chute exerts on the sled at point .arrow_forward(a) Sketch a graph of the potential energy function U(x)=kx2/2+Aex2 where k , A, and are constants. (b) What is the force corresponding to this potential energy? (c) Suppose a particle of mass in moving with this potential energy has a velocity v when its position is x = . Show that the particle does not pass 2+2 through the origin unless Amv2=k22(1e a 2 ) .arrow_forwardTwo stones, one with twice the mass of the other, are thrown straight up and rise to the same height h. Compare their changes in gravitational potential energy (choose one): (a) They rise to the same height, so the stone with twice the mass has twice the change in gravitational potential energy. (b) They rise to the same height, so they have the same change in gravitational potential energy. (c) The answer depends on their speeds at height h.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY