Concept explainers
(a)
Interpretation:
The pH of the given buffer is to be calculated.
Concept Introduction:
The buffer is a solution that resists any change in pH on addition of
(b)
Interpretation:
The pH of the given buffer is to be calculated.
Concept Introduction:
The buffer is a solution that resists any change in pH on addition of
(c)
Interpretation:
The pH of the given buffer is to be calculated.
Concept Introduction:
The buffer is a solution that resists any change in pH on addition of
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Chemistry for Today: General Organic and Biochemistry
- Briefly describe how a buffer solution can control the pH of a solution when strong acid is added and when strong base is added. Use NH3/NH4Cl as an example of a buffer and HCl and NaOH as the strong acid and strong base.arrow_forward1. Which choice would be a good buffer solution? 0.20 M KCH3CO2 and 0.20 M CH3CO2H 0.20 M HCl and 0.10 M KOH 0.20 M CH3CO2H and 0.10 M HCO2H 0.10 HCl and 0.010 M KClarrow_forward. A buffered solution is prepared containing acetic acid, HC2H3O2, and sodium acetate, NaC2H3O2, both at 0.5 M. Write a chemical equation showing how this buffered solution would resist a decrease in its pH if a few drops of aqueous strong acid HCI solution were added to it. Write a chemical equation showing how this buffered solution would resist an increase in its pH if a few drops of aqueous strong base NaOH solution were added to it.arrow_forward
- A solution of weak base is titrated to the equivalence point with a strong acid. Which one of the following statements is most likely to be correct? a The pH of the solution at the equivalence point is 7.0. b The pH of the solution is greater than 13.0. c The pH of the solution is less than 2.0. d The pH of the solution is between 2.0 and 7.0. e The pH of the solution is between 7.0 and 13.0. The reason that best supports my choosing the answer above is a Whenever a solution is titrated with a strong acid, the solution will be very acidic. b Because the solution contains a weak base and the acid (titrant) is used up at the equivalence point, the solution will be basic. c Because the solution contains the conjugate acid of the weak base at the equivalence point, the solution will be acidic.arrow_forwardPhenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forwardConsider all acid-base indicators discussed in this chapter. Which of these indicators would be suitable for the titration of each of these? (a) NaOH with HClO4 (b) acetic acid with KOH (c) NH3 solution with HBr (d) KOH with HNO3 Explain your choices.arrow_forward
- What is the pH of a solution that consists of 0.20 M ammonia, NH3, and 0.20 M ammonium chloride, NH4Cl?arrow_forwardSodium benzoate, NaC7H5O2, is used as a preservative in foods. Consider a 50.0-mL sample of 0.250 M NaC7H5O2 being titrated by 0.200 M HBr. Calculate the pH of the solution: a when no HBr has been added; b after the addition of 50.0 mL of the HBr solution; c at the equivalence point; d after the addition of 75.00 mL of the HBr solution. The Kb value for the benzoate ion is 1.6 1010.arrow_forwardComposition diagrams, commonly known as alpha plots, are often used to visualize the species in a solution of an acid or base as the pH is varied. The diagram for 0.100 M acetic acid is shown here. The plot shows how the fraction [alpha ()] of acetic acid in solution, =[CH3CO2H][CH3CO2H]+[CH3CO2] changes as the pH increases (blue curve). (The red curve shows how the fraction of acetate ion, CH3CO2, changes as the pH increases.) Alpha plots are another way of viewing the relative concentrations of acetic acid and acetate ion as a strong base is added to a solution of acetic acid in the course of a titration. (a) Explain why the fraction of acetic acid declines and that of acetate ion increases as the pH increases. (b) Which species predominates at a pH of 4, acetic acid or acetate ion? What is the situation at a pH of 6? (c) Consider the point where the two lines cross. The fraction of acetic acid in the solution is 0.5, and so is that of acetate ion. That is, the solution is half acid and half conjugate base; their concentrations are equal. At this point, the graph shows the pH is 4.74. Explain why the pH at this point is 4 74.arrow_forward
- Identify the buffer system(s)the conjugate acidbase pair(s)present in a solution that contains equal molar amounts of the following: a. HF, KC2H3O2, NaC2H3O2, and NaF b. HNO3, NaOH, H3PO4, and NaH2PO4arrow_forwardA quantity of 0.25 M sodium hydroxide is added to a solution containing 0.15 mol of acetic acid. The final volume of the solution is 375 mL and the pH of this solution is 4.45. a What is the molar concentration of the sodium acetate? b How many milliliters of sodium hydroxide were added to the original solution? c What was the original concentration of the acetic acid?arrow_forwardAn important component of blood is the buffer combination of bicarbonate ion and carbonic acid. Consider blood with a pH of 7.42. a What is the ratio of [H2CO3] to [HCO3]? b What does the pH become if 15% of the bicarbonate ions are converted to carbonic acid? c What does the pH become if 25% of the carbonic acid molecules are converted to bicarbonate ions?arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning