
(a)
The amount of sunlight, in terms of power (in watt), that will be reflected back into space due to Earth’s albedo. Given that the total power of the sunlight that reaches the top of the atmosphere is
(a)

Answer to Problem 8Q
Solution:
Explanation of Solution
Given data:
The total power of the sunlight that reaches the top of the atmosphere is
Formula used:
The expression for the total power of reflected light is,
Explanation:
The amount of sunlight that will be reflcted from the Earth’s surface can be calculated using the following formula.
Substitute 0.31 for Albedo and
Conclusion:
Therefore, due to Earth’s albedo,
(b)
The amount of
(b)

Answer to Problem 8Q
Solution:
Explanation of Solution
Given data:
The total power of the sunlight that reaches the top of the atmosphere is
Formula used:
The expression for the total power of radiated light is,
Explanation:
As the amount of albedo is 0.31, the amount of absorbed radiation will be
The expression for radiated light is,
Substitute 0.69 for amount of radiation absorbed or radiated and
Conclusion:
Therefore, the amount of radiation that would be emited by the Earth in the absence of atmosphere will be
(c)
The amount of radiation (in terms of power) that would be radiated by one square meter of the Earth’s surface in the absence of atmosphere, given that the total power of the sunlight that reaches the top of the atmosphere is
(c)

Answer to Problem 8Q
Solution:
Explanation of Solution
Given data:
The total power of the sunlight that reaches the top of the atmosphere is
Formula used:
In order to calculate the amount of radiations that would be radiated by one square meter of the Earth’s surface or flux, the following formula will be used:
Here, P stands for power of radiation.
The surface area of a spherical body is calculated using the following formula:
Here, r is radius.
Explanation:
From part (b), the re-radiated radiation from the entire surface or power of radiation (P) of the Earth in the absence of atmosphere was calculated to be
Consider Earth to be a perfect sphere and recall the formula for the surface area of a sphere (Earth).
Substitute
Recall the expression for calculating flux.
Substitute
Conclusion:
The power of radiation that would be emitted by one square meter of the Earth’s surface in the absence of atmosphere will be
(d)
The average temperature of the surface of the Earth in both Kelvin (K) as well as in degree Celsius (°C), given that the total power of the sunlight that reaches the top of the atmosphere is
(d)

Answer to Problem 8Q
Solution:
Explanation of Solution
Given data:
The total power of the sunlight that reaches the top of the atmosphere is
Formula used:
For calculating the temperature of the Earth’s surface in Kelvin, the Stefan-Boltzmann formula can be used.
Here, T is the temperature,
Temperature in °C can be calculated using the following formula:
Introduction:
For calculating the average temperature of the Earth’s surface, the Stefan-Boltzmann law is applied. As per this law, the higher the temperature of a surface, the more energy it radiates. This radiated energy is no dobt less than that radiated by the Sun.
Explanation:
The value of flux (F) is
Write the expression for the Stefan-Boltzomann forlmula in terms of T.
Substitute
Recall the formula to calculate tmerperature in degree Celsius.
Substitute 254 K for temperature in K.
Conclusion:
Therefore, the average surface temperature of the Earth in Kelvin and degree Celsius is
(e)
The reason that Earth’s actual temperature is higher than the one calculated in part (d).
(e)

Answer to Problem 8Q
Solution:
The Earth’s actual surface temperature is higher than the one calculated in part (d) because of greenhouse effect.
Explanation of Solution
Introduction:
The values calculated in parts (b), (c), and (d) have been obtained by assuming that there is no atmosphere present on the Earth. However, this is not the case as the atmosphere of the Earth is made up of abundant gases, like water vapor, carbon dioxide, oxygen, nitrogen, methane, and other trace gases.
Explanation:
The atmosphere of Earth is made of gases called “greenhouse” gases that trap the outgoing long infrared radiations after sunset. These radiations, thus trapped, maintain the temperature of the atmosphere and prevent the Earth from turning ice cold at night.
In case the concentration of greenhouse gases like carbon dioxide, methane, vapor, and nitrogen oxide, increases in the atmosphere, the greenhouse effect will escalate. This raises the temperature of the Earth’s surface, which is more than what was calculated in part (d) of the question.
Conclusion:
Therefore, the average temperature of the Earth’s surface is more than that calculated in part (d) because of the presence of greenhouse gases in the atmosphere, which prevents the temperature from dipping below freezing point at night.
Want to see more full solutions like this?
Chapter 9 Solutions
Universe
- TICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forwardThe 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forwardImagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.arrow_forward
- If a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forwardA futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forward
- Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forwardAt a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?arrow_forwardA hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forward
- A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forwardA very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning





