College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 8P
Communications satellites. Communications satellites are placed in orbits so that they always remain above the same point of the earth’s surface. (a) What must be the period of such a satellite? (b) What is its
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
College Physics (10th Edition)
Ch. 9 - What is the difference between the tangential...Ch. 9 - A flywheel rotates with constant angular velocity....Ch. 9 - A flywheel rotates with constant angular...Ch. 9 - A uniform ring of mass M and radius R and a point...Ch. 9 - According to experienced riders, you make a bike...Ch. 9 - A solid ball, a solid cylinder, and a hollow...Ch. 9 - Experienced cooks can tell whether an egg is raw...Ch. 9 - Part of the kinetic energy of a moving automobile...Ch. 9 - Can you think of a body that has the same moment...Ch. 9 - A client has come to you with two metal balls of...
Ch. 9 - If a ball roils down an irregularly shaped hill...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - When a wheel turns through one complete rotation,...Ch. 9 - Two points are on a disk that rotates about an...Ch. 9 - A bicycle wheel rotating at a rate of 12 rad/s...Ch. 9 - Two uniform solid spheres of the same size, but...Ch. 9 - A disk starts from rest and has a constant angular...Ch. 9 - Two unequal masses m and 2m are attached to a thin...Ch. 9 - A thin uniform bar has a moment of inertia I about...Ch. 9 - Two small objects of equal weight are attached to...Ch. 9 - A disk starts from rest and rotates with constant...Ch. 9 - Two identical merry-go-rounds are rotating at the...Ch. 9 - A solid sphere and a hollow sphere, both uniform...Ch. 9 - A uniform ball rolls without slipping toward a...Ch. 9 - A flexible straight wire 75.0 cm long is bent into...Ch. 9 - (a) What angle in radians is subtended by an arc...Ch. 9 - (a) Calculate the angular velocity (in rad/s) of...Ch. 9 - The once-popular LP (long-play) records were 12...Ch. 9 - If a wheel 212 cm in diameter takes 2.25 s for...Ch. 9 - A curve ball is a type of pitch in which the...Ch. 9 - A laser beam aimed from the earth is swept across...Ch. 9 - Communications satellites. Communications...Ch. 9 - An airplane propeller is rotating at 1900 rpm. (a)...Ch. 9 - At t = 0 a cooling fan running at 200 rad/s is...Ch. 9 - A turntable that spins at a constant 78.0 rpm...Ch. 9 - DVDs. The angular speed of digital video discs...Ch. 9 - A circular saw blade 0.200 m in diameter starts...Ch. 9 - A wheel turns with a constant angular acceleration...Ch. 9 - An electric fan is turned off, and its angular...Ch. 9 - A flywheel in a motor is spinning at 500.0 rpm...Ch. 9 - A flywheel having constant angular acceleration...Ch. 9 - A potters wheel is spinning with an initial...Ch. 9 - A car is traveling at a constant speed on the...Ch. 9 - (a) A cylinder 0.150 m in diameter rotates in a...Ch. 9 - A wheel rotates with a constant angular velocity...Ch. 9 - Ultracentrifuge. Find the required angular speed...Ch. 9 - Exercise! An exercise bike that you pedal in place...Ch. 9 - A flywheel with a radius of 0.300 m starts from...Ch. 9 - A car is traveling at a speed of 101 km/h on the...Ch. 9 - Dental hygiene. Electric toothbrushes can be...Ch. 9 - The spin cycles of a washing machine have two...Ch. 9 - A slender metal rod has a mass M and length L. The...Ch. 9 - A thin uniform bar has two small balls glued to...Ch. 9 - Use the formulas of Table 9.2 to find the moment...Ch. 9 - Four small 0.200 kg spheres, each of which you can...Ch. 9 - Suppose you are given a steel bar and you cut it...Ch. 9 - A bicycle chain connects two sprockets as shown in...Ch. 9 - A wagon wheel is constructed as shown in Figure...Ch. 9 - You need to design an industrial turntable that is...Ch. 9 - A grinding wheel in the shape of a solid disk is...Ch. 9 - The flywheel of a gasoline engine is required to...Ch. 9 - An airplane propeller is 2.08 m in length (from...Ch. 9 - Storing energy in flywheels. It has been suggested...Ch. 9 - A light string is wrapped around the outer rim of...Ch. 9 - A solid uniform 3.25 kg cylinder, 65.0 cm in...Ch. 9 - A solid copper disk has a radius of 0.2 m, a...Ch. 9 - Gymnastics. We can roughly model a gymnastic...Ch. 9 - A bicycle racer is going downhill at 11.0 m/s...Ch. 9 - A 2.20 kg hoop 1.20 m in diameter is rolling to...Ch. 9 - A solid uniform sphere and a uniform spherical...Ch. 9 - A size-5 soccer bail of diameter 22.6 cm and mass...Ch. 9 - A solid uniform marble and a block of ice, each...Ch. 9 - What fraction of the total kinetic energy is...Ch. 9 - A string is wrapped several times around the rim...Ch. 9 - A 150.0 kg cart rides down a set of tracks on four...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - A 7300 N elevator is to be given an acceleration...Ch. 9 - A 392 N wheel comes off a moving truck and rolls...Ch. 9 - Odometer. The odometer (mileage gauge) of a car...Ch. 9 - Speedometer. Your cars speedometer works in much...Ch. 9 - A passenger bus in Zurich, Switzerland, derived...Ch. 9 - Kinetic energy of bicycle wheels. A 55 kg woman is...Ch. 9 - Compact discs. When a compact disc (CD) is...Ch. 9 - A vacuum cleaner belt is looped over a shaft of...Ch. 9 - A basketball (which can be closely modeled as a...Ch. 9 - Human rotational energy. A dancer is spinning at...Ch. 9 - A solid uniform spherical boulder rolls down a...Ch. 9 - A thin uniform rod 50.0 cm long with mass 0.320 kg...Ch. 9 - In redesigning a piece of equipment, you need to...Ch. 9 - A solid uniform spherical stone starts moving from...Ch. 9 - A solid, uniform hall rolls without slipping up a...Ch. 9 - The kinetic energy of walking. If a person of mass...Ch. 9 - The kinetic energy of running. Using the previous...Ch. 9 - The Spinning Eel. American eels are freshwater...Ch. 9 - The eel is observed to spin at 14 rev/s clockwise,...Ch. 9 - The eel has a certain amount of rotational kinetic...Ch. 9 - A new species of eel is found to have the same...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Which of the following three kinds of ...
Cosmic Perspective Fundamentals
Q6.6 In Example 5.5 (Section 5.1), how does the work done on the bucket by the tension in the cable compare wit...
University Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Problems 27 through 29 show a free-body diagram. For each problem, (a) redraw the free-body diagram and (b) wri...
College Physics: A Strategic Approach (3rd Edition)
Imagine you are comparing the ability of electric hot plates of different sizes and temperatures to fully cook ...
Lecture- Tutorials for Introductory Astronomy
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The propeller of an aircraft accelerates from rest with an angular acceleration = 4t + 6, where is in rad/s2 and t isin seconds. What is the angle in radians through which thepropeller rotates from t = 1.00 s to t = 6.00 s?arrow_forwardWhat is (a) the angular speed and (b) the linear speed of a point on Earth’s surface at latitude 30N . Take the radius of the Earth to be 6309 km. (c) At what latitude would your linear speed be 10 m/s?arrow_forward(a) What is the period of rotation of Earth in seconds? (b) What is the angular velocity of Earth? (c) Given that Earth has a radius of 6.4106 m at its equator, what is the linear velocity at Earth's surface?arrow_forward
- In testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forwardIn circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction. Explain your answer.arrow_forwardA wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forward
- A track star runs a 400-m race on a 400-m circular track in 45 s. What is his angular velocity assuming a constant speed?arrow_forwardThe precession angular velocity of a gyroscope is 1.0 rad/s. If the mass of the rotating disk is 0.4 kg and its radius is 30 cm, as well as the distance from the center of mass to the pivot, what is the rotation rate in rev/s of the disk?arrow_forwardA point on a rotating turntable 20.0 cm from the center accelerates from rest to a final speed of 0.700 m/s in 1.75 s. At t = 1.25 s, find the magnitude and direction of (a) the radial acceleration, (b) the tangential acceleration, and (c) the total acceleration of the point.arrow_forward
- Jeff, running outside to play, pushes on a swinging door, causing its motion to be briefly described by = t2 + 0.800 t + 2.00,where t is in seconds and is in radians. At t = 0 and at t = 1.50s, what are the a. angular position, b. angular speed, and c. angularacceleration of the door?arrow_forwardA space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forwardA wheel is rotating about a fixed axis with constant angular acceleration 3 rad/s2. At different moments, its angular speed is 2 rad/s, 0. and +2 rad/s. For a point on the rim of the wheel, consider at these moments the magnitude of the tangential component of acceleration and the magnitude of the radial component of acceleration. Rank the following five items from largest to smallest: (a) |at| when = 2 rad/s, (b)|ar| when = 2 rad/s, (c)|ar| when = 0, (d) |at| when = 2 rad/s, and (e) |ar| when = 2 rad/s. If two items are equal, show them as equal in your ranking. If a quantity is equal to zero, show that fact in your ranking.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Rotational Kinematics Physics Problems, Basic Introduction, Equations & Formulas; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=0El-DqrCTZM;License: Standard YouTube License, CC-BY