Storing energy in flywheels. It has been suggested that we should use our power plants to generate energy in the off-hours (such as late at night) and store it for use during the day. One idea put forward is to store the energy in large flywheels. Suppose we want to build such a flywheel in the shape of a hollow cylinder of inner radius 0.500 m and outer radius 1.50 m, using concrete of density 2.20 × 10 3 kg/m 3 . (a) If, for stability, such a heavy flywheel is limited to 1.75 seconds for each revolution and has negligible friction at its axle, what must be its length to store 2.5 MJ of energy in its rotational motion? (b) Suppose that by strengthening the frame you could safely double the flywheel’s rate of spin. What length of flywheel would you need in that case? (Solve this part without reworking the entire problem!)
Storing energy in flywheels. It has been suggested that we should use our power plants to generate energy in the off-hours (such as late at night) and store it for use during the day. One idea put forward is to store the energy in large flywheels. Suppose we want to build such a flywheel in the shape of a hollow cylinder of inner radius 0.500 m and outer radius 1.50 m, using concrete of density 2.20 × 10 3 kg/m 3 . (a) If, for stability, such a heavy flywheel is limited to 1.75 seconds for each revolution and has negligible friction at its axle, what must be its length to store 2.5 MJ of energy in its rotational motion? (b) Suppose that by strengthening the frame you could safely double the flywheel’s rate of spin. What length of flywheel would you need in that case? (Solve this part without reworking the entire problem!)
Storing energy in flywheels. It has been suggested that we should use our power plants to generate energy in the off-hours (such as late at night) and store it for use during the day. One idea put forward is to store the energy in large flywheels. Suppose we want to build such a flywheel in the shape of a hollow cylinder of inner radius 0.500 m and outer radius 1.50 m, using concrete of density 2.20 × 103 kg/m3. (a) If, for stability, such a heavy flywheel is limited to 1.75 seconds for each revolution and has negligible friction at its axle, what must be its length to store 2.5 MJ of energy in its rotational motion? (b) Suppose that by strengthening the frame you could safely double the flywheel’s rate of spin. What length of flywheel would you need in that case? (Solve this part without reworking the entire problem!)
two satellites are in circular orbits around the Earth. Satellite A is at an altitude equal to the Earth's radius, while satellite B is at an altitude equal to twice the Earth's radius. What is the ratio of their periods, Tb/Ta
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of
+1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed
for 550 nm? Express your answer in units of μm to one decimal point.
Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm?
Express your answer in diopters to one decimal point.
Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct
her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius
p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis
when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to
calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed
Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of
the plano-convex field flattener? (p written as rho )
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.