An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 8MC
To determine
Letter “s” in the acronym for laser.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
What is the wavelength (in nm) of a laser with an energy of (5.59x10^-19) J? Answer
to 3 significant figures in scientific notation. Unit is case sensitive.
Note: Your answer is assumed to be reduced to the highest power possible.
Your Answer:
Answer
x10
units
Some of the most powerful lasers are based on the energy levels of neodymium in solids, such as glass, as shown in the figure.
Verify that the 1.17 eV transition produces 1.06 µm radiation: Fill in the blanks for the work done to solve
___a)__________ev m
? = ___________________________________ = 1.06 µm
___b)__________ev
11.8 Give the name for each of the characterization techniques in Fig. P 11.8.
(i)
(ii)
(iii)
(iv)
(v)
O Ion
M> X Ray
Electron
Fig. P11.8
Chapter 9 Solutions
An Introduction to Physical Science
Ch. 9.1 - Prob. 1PQCh. 9.1 - Prob. 2PQCh. 9.2 - Prob. 1PQCh. 9.2 - Prob. 2PQCh. 9.2 - Prob. 9.1CECh. 9.3 - Prob. 1PQCh. 9.3 - When does a hydrogen atom emit or absorb radiant...Ch. 9.3 - Prob. 9.2CECh. 9.3 - Prob. 9.3CECh. 9.3 - Prob. 9.4CE
Ch. 9.4 - Prob. 1PQCh. 9.4 - Prob. 2PQCh. 9.5 - Prob. 1PQCh. 9.5 - Prob. 2PQCh. 9.6 - Prob. 1PQCh. 9.6 - Prob. 2PQCh. 9.6 - Prob. 9.5CECh. 9.7 - Prob. 1PQCh. 9.7 - Prob. 2PQCh. 9 - Prob. AMCh. 9 - Prob. BMCh. 9 - Prob. CMCh. 9 - Prob. DMCh. 9 - Prob. EMCh. 9 - Prob. FMCh. 9 - Prob. GMCh. 9 - Prob. HMCh. 9 - Prob. IMCh. 9 - Prob. JMCh. 9 - Prob. KMCh. 9 - Prob. LMCh. 9 - Prob. MMCh. 9 - Prob. NMCh. 9 - Prob. OMCh. 9 - Prob. PMCh. 9 - Prob. QMCh. 9 - Prob. 1MCCh. 9 - Prob. 2MCCh. 9 - Prob. 3MCCh. 9 - Prob. 4MCCh. 9 - Prob. 5MCCh. 9 - Prob. 6MCCh. 9 - Prob. 7MCCh. 9 - Prob. 8MCCh. 9 - Prob. 9MCCh. 9 - Prob. 10MCCh. 9 - Prob. 11MCCh. 9 - Prob. 12MCCh. 9 - Prob. 13MCCh. 9 - Prob. 14MCCh. 9 - Prob. 1FIBCh. 9 - Prob. 2FIBCh. 9 - Prob. 3FIBCh. 9 - Prob. 4FIBCh. 9 - Prob. 5FIBCh. 9 - Prob. 6FIBCh. 9 - Prob. 7FIBCh. 9 - Prob. 8FIBCh. 9 - Prob. 9FIBCh. 9 - Prob. 10FIBCh. 9 - Prob. 11FIBCh. 9 - Prob. 12FIBCh. 9 - Prob. 1SACh. 9 - Prob. 2SACh. 9 - Prob. 3SACh. 9 - Prob. 4SACh. 9 - Prob. 5SACh. 9 - Prob. 6SACh. 9 - Prob. 7SACh. 9 - Prob. 8SACh. 9 - Prob. 9SACh. 9 - Prob. 10SACh. 9 - Prob. 11SACh. 9 - Prob. 12SACh. 9 - Prob. 13SACh. 9 - Prob. 14SACh. 9 - Prob. 15SACh. 9 - Prob. 16SACh. 9 - Prob. 17SACh. 9 - Prob. 18SACh. 9 - Prob. 19SACh. 9 - Prob. 20SACh. 9 - Prob. 21SACh. 9 - Prob. 22SACh. 9 - Prob. 23SACh. 9 - Prob. 24SACh. 9 - Prob. 25SACh. 9 - Prob. 26SACh. 9 - Prob. 27SACh. 9 - Prob. 28SACh. 9 - Prob. 29SACh. 9 - Prob. 30SACh. 9 - Prob. 31SACh. 9 - Prob. 32SACh. 9 - Prob. 33SACh. 9 - Prob. 34SACh. 9 - Visualize the connection for the descriptions of...Ch. 9 - Prob. 1AYKCh. 9 - Prob. 2AYKCh. 9 - Prob. 3AYKCh. 9 - Prob. 4AYKCh. 9 - Prob. 5AYKCh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use dimensional analysis and show that the expression e=mc^2 has a unit of energy.arrow_forwardFor a K*- CH ion pair, attractive and repulsive energies EA and ER, respectively, depend on the distance between the ions r, according to 5.8 x 10-6 1.436 EA and ER For these expressions, energies are expressed in electron volts per K*- CH pair, and r is the distance in nanometers. a) If the net energy EN is just the sum of the two expressions above: EN = E, + ER, Find the values of ro and E, ? b) If curves of E, ER, and EN are plotted in given figure, compare the calculated values of ro and E, with that from the graph. 2 am 0.00 010 0.20 0.30 040 0.70 00 1.00 Interatomic Separation, nm Bonding Energy, eVarrow_forwardA laser system is capable of lasing at several infrared wavelengths where the most prominent wavelengths where the most prominent wavelengths is 3.1235nm. (Given k=8.6* 10^-5 ev/k or 1.38* 10^-23 J/K a) What would be the difference(in ev)between upper and lower levels for this wavelengths ? b) The relative population of these states at 27degree C is c) Which states is occupied by atoms under conditions of thermal equilibrium ? d) The relative population of these states at 40degree C is e) What would be the difference(in J)between upper and lower levels for this wavelengths ?arrow_forward
- The bandgaps of silicon and gallium arsenide are 1.12 eV and 1.42 eV, respectively. What are the wavelengths of light that you would expect to be emitted from these devices based on direct recombination of holes and electrons? To what “colors” of light do these wavelengths correspond?arrow_forwardA hypothetical molecular laser works in 3 level energy system. The energies of the levels E₁. Eg and E3 are OeV, 0.18 V and 0.30 ev resp. of the laser transition takes place between the levels E₂ 4 E₁ find the (1) wavolength of radiation that excites molecules for laser action. thearrow_forward30. The equation: H¸(T) = H¸(0) × [1 − (−)²] - '] describes with a good approximation the dependence of the C critical magnetic field on the temperature T in the case of type I superconductors. For Sn we have: T = 3.72 = K and H (0) 24.3 KA/m. Design them qualitatively curves of electrical resistance as a function of temperature at zero field, at 8.1 kA/m field as well as at 48.6 kA/m field on the same diagram.arrow_forward
- The valence election of chlorine is excited to a 3p state, (a) What is the magnitude of the election's orbital angular momentum? (b) What are possible values for the z-component of angular’ measurement?arrow_forwardThe 3p level of sodium has an energy of -3.0 eV, and the 3d level has an energy of 21.5 eV. (a) Determine Zeff for each of these states. (b) Explain the difference.arrow_forwardA Alo 35 Ga0.65As/G.AS/Alo 35Gao.65AS pn" DH LED made of very high quality semiconductors has a radiative lifetime of t,=9 ns and nonradiative of tn -96 ns. At 300 K the LED is biased with a voltage V=2 V and the injected current at the biased voltage is I= 66 m4. Calculate the number of photons extracted from the LED that are normally incident to air from the GaAs active region. O a. 3.584e17 s-1 O b. 5.300e16 s-1 O c. 6.224e15 s-1 O d. 4.904e19 s-1 O e. 4.904e21 s-1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning