Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 88AP
To determine
The magnitude of the change in the velocity of the Sun relative to the centre of mass of the system over a six month period.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We watch two identical astronomical bodies A and B, each of mass m, fall toward each other from rest because of the gravitational force on each from the other. Their initial center-to-center separation is Ri. Assume that we are in an inertial reference frame that is stationary with respect to the center of mass of this twobody system. Use the principle of conservation of mechanical energy (Kf + Uf = Ki + Ui) to find the following when the centerto- center separation is 0.5Ri : (a) the total kinetic energy of the system, (b) the kinetic energy of each body, (c) the speed of each body relative to us, and (d) the speed of body B relative to body A. Next assume that we are in a reference frame attached to body A (we ride on the body). Now we see body B fall from rest toward us. From this reference frame, again use Kf + Uf = Ki + Ui to find the following when the center-to-center separation is 0.5Ri : (e) the kinetic energy of body B and (f) the speed of body B relative to body A. (g) Why…
Two small spherical asteroids, each of mass 650 kg, are traveling through deep space along the same line and in the same direction. Initially they are 28 m apart and both have a speed of 5500 m/s. Assume there are no external forces acting on the system, so the velocity of the system’s center of mass does not change. However, the individual speeds of the asteroids will change due to the gravitational force between them. Later the asteroids are 4.6 m apart. What was their change in speed, in meters per second? Give the absolute value, as their speeds change by equal but opposite amounts.
The 100 kg sphere A is released from rest at an angle of α from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B.
What is the velocity of A just before it hits block B? And what is the length of the rope l, if angle alpha is 30 degrees
Chapter 9 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 9.1 - Two objects have equal kinetic energies. How do...Ch. 9.1 - Your physical education teacher throws a baseball...Ch. 9.3 - Two objects are at rest on a frictionless surface....Ch. 9.3 - Rank an automobile dashboard, seat belt, and air...Ch. 9.4 - Prob. 9.5QQCh. 9.4 - A table-tennis ball is thrown at a stationary...Ch. 9.6 - A baseball bat of uniform density is cut at the...Ch. 9.7 - A cruise ship is moving at constant speed through...Ch. 9 - Prob. 1OQCh. 9 - Prob. 2OQ
Ch. 9 - Prob. 3OQCh. 9 - Prob. 4OQCh. 9 - Prob. 5OQCh. 9 - Prob. 6OQCh. 9 - The momentum of an object is increased by a factor...Ch. 9 - The kinetic energy of an object is increased by a...Ch. 9 - If two particles have equal momenta, are their...Ch. 9 - Prob. 10OQCh. 9 - Prob. 11OQCh. 9 - Two particles of different mass start from rest....Ch. 9 - Prob. 13OQCh. 9 - A basketball is tossed up into the air, falls...Ch. 9 - Prob. 15OQCh. 9 - Prob. 16OQCh. 9 - Prob. 17OQCh. 9 - Prob. 18OQCh. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - While in motion, a pitched baseball carries...Ch. 9 - You are standing perfectly still and then take a...Ch. 9 - Prob. 6CQCh. 9 - Two students hold a large bed sheet vertically...Ch. 9 - A juggler juggles three balls in a continuous...Ch. 9 - Prob. 9CQCh. 9 - Does a larger net force exerted on an object...Ch. 9 - Does a larger net force always produce a larger...Ch. 9 - A bomb, initially at rest, explodes into several...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - A 3.00-kg particle has a velocity of...Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - Prob. 9PCh. 9 - When you jump straight up as high as you can, what...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - Prob. 12PCh. 9 - An estimated forcetime curve for a baseball struck...Ch. 9 - Prob. 14PCh. 9 - A glider of mass m is free to slide along a...Ch. 9 - Prob. 16PCh. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - A tennis player receives a shot with the ball...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Prob. 20PCh. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - Prob. 23PCh. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Prob. 39PCh. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - Prob. 41PCh. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Consider a system of two particles in the xy...Ch. 9 - Prob. 53PCh. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - A ball of mass m is thrown straight up into the...Ch. 9 - Prob. 66APCh. 9 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Prob. 73APCh. 9 - Prob. 74APCh. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Prob. 77APCh. 9 - Prob. 78APCh. 9 - Prob. 79APCh. 9 - A small block of mass m1 = 0.500 kg is released...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - Prob. 84APCh. 9 - Prob. 85APCh. 9 - Prob. 86APCh. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 88APCh. 9 - Prob. 89APCh. 9 - Prob. 90APCh. 9 - Prob. 91APCh. 9 - Prob. 92CPCh. 9 - Prob. 93CPCh. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - On a horizontal air track, a glider of mass m...Ch. 9 - Prob. 96CP
Knowledge Booster
Similar questions
- Find the center of mass of a cone of uniform density that has a radius R at the base, height h, and mass M. Let the origin be at the center of the base of the cone and have +z going through the cone vertex.arrow_forwardThe 100 kg sphere A is released from rest at an angle of α from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B. Which of the following best approximates the value of height h? 0.255m 0.510 m 5.00 m 1.274 marrow_forwardThe 100 kg sphere A is released from rest at an angle of α from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B. What is the velocity of A just before it hits block B? Choices:2.94 m/s11.25 m/s5.00 m/s3.44 m/sarrow_forward
- Consider as a system the Sun with Mars in a circular orbit around it. Find the magnitude of the change in the velocity of the Sun relative to the center of mass of the system during the time Mars completes half an orbit. Assume the mass of the Sun is 5.68 x 1029 kg, the mass of Mars is 6.42 x 1023 kg, its period is 5.94 x 107 s, and the radius of its orbit is 2.28 x 10¹¹ m. Ignore the influence of other celestial objects. 19.4 x m/sarrow_forwardSphere A weighs 5 kg and is raised until the 2m cord makes an angle of 60 degrees with the vertical. It is then released from rest and hits a body B initially at rest on the smooth horizontal floor. Body B weighs 10 kg and the coefficient of restitution between A and B is 0.75. Determine the velocity of B (m/s) after impact. Answer in 2 decimals and positive value onlyarrow_forwardAn asteroid with a mass of 75 kg is travelling in deep space, far away from the the gravitational pull of any large body. It is moving at a speed of uA = 5.0 ms-1, in the positive x direction towards another smaller asteroid B which has a mass of 65 kg - which is stationary. Following the collision the asteroids move at 54° to each other and both at 27° to the original direction with speeds vA and vB. If neither asteroid is spinning prior to or following the collision, show that the collision is inelastic.arrow_forward
- An asteroid with a mass of 75 kg is travelling in deep space, far away from the the gravitational pull of any large body. It is moving at a speed of uA = 5.0 ms-1, in the positive x direction towards another smaller asteroid B which has a mass of 65 kg - which is stationary. Following the collision the asteroids move at 54° to each other and both at 27° to the original direction with speeds vA and vB. If neither asteroid is spinning prior to or following the collision, sketch the situation described above and label it with all the physical quantities mentioned and distinguish between before and after the collision.arrow_forwardA group of engineers is constructing a giant, circular rotating space station. Most of the mass of the station isdistributed among three points along the outer walls of the station and separated by 120 degrees from eachother. The masses of these three points are as follows: 2500 kg, 2000.0 kg, and 1500 kg. The radius of the spacestation is 100.0 m. Find the coordinates of the center of mass (COM) of the space station.arrow_forwardProblem B) The mass of the Earth is 5.97 x 1024 kg and the mass of the Sun is 1.99 x 1030 kg. The average distance between the Sun and the Earth is 1.5 x 1011 m from their centers. Where is the center of mass of the Earth-Sun system located with respect to the center of the Sun? If the radius of the Sun is 6.96 x 108 m, is the center of mass within the Sun or outside the Sun?arrow_forward
- A ball weighing 800 grams and having a radius of 2cm moves in the direction of the positive x-axis at a speed of 5m/s. It collides with another stationary ball weighing 500 grams and also having a radius of 2cm. The collision occurs off-center, with the vertical components of the centers of the balls differing by 1cm. Following the collision, the lighter ball attains a speed of 3m/s. Determine the velocity of the heavier ball after the collision and calculate the amount of energy lost during the collision.arrow_forwardRiders in an amusement park ride shaped like a Viking ship hung from a large pivot are rotated back and forth like a rigid pendulum. Sometime near the middle of the ride, the ship is momentarily motionless at the top of its circular arc. The ship then swings down under the influence of gravity. (a) Assuming negligible friction, find the speed (in m/s) of the riders at the bottom of its arc, given the system's center of mass travels in an arc having a radius of 16.0 m and the riders are near the center of mass. (Assume the top of the circular arc is when the pendulum arm is horizontal. You may need to use energy methods from the next chapter.) (b) What is the centripetal acceleration (in m/s2) at the bottom of the arc?arrow_forwardTwo stars each of one solar mass (= 2×1030 kg) are approaching each other for a head on collision. When they are a distance 109 km, their speeds are negligible. What is the speed with which they collide ? The radius of each star is 104 km. Assume the stars to remain undistorted until they collide. (Use the known value of G)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning