A Hydrometer is an instrument used to determine liquid density. A simple one is sketched in Figure P9.84. The bulb of a syringe is squeezed and released to lift a sample of the liquid of interest into a tube containing a calibrated rod of known density. (Assume the rod is cylindrical.) The rod. of length L and average density ρ 0 , floats partially immersed in the liquid of density ρ . A length h of the rod protrudes above the surface of the liquid. Show that the density of the liquid is given by ρ = ρ 0 L L − h Figure P9.84
A Hydrometer is an instrument used to determine liquid density. A simple one is sketched in Figure P9.84. The bulb of a syringe is squeezed and released to lift a sample of the liquid of interest into a tube containing a calibrated rod of known density. (Assume the rod is cylindrical.) The rod. of length L and average density ρ 0 , floats partially immersed in the liquid of density ρ . A length h of the rod protrudes above the surface of the liquid. Show that the density of the liquid is given by ρ = ρ 0 L L − h Figure P9.84
Solution Summary: The author explains that the concept of force buoyancy is used for the determination of the density of a given liquid.
A Hydrometer is an instrument used to determine liquid density. A simple one is sketched in Figure P9.84. The bulb of a syringe is squeezed and released to lift a sample of the liquid of interest into a tube containing a calibrated rod of known density. (Assume the rod is cylindrical.) The rod. of length L and average density ρ0, floats partially immersed in the liquid of density ρ. A length h of the rod protrudes above the surface of the liquid. Show that the density of the liquid is given by
How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't known
2. Consider the situation described in problem 1 where light emerges horizontally from ground level.
Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height
of y = 1.5 m.
2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net
disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m
and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.