
College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 24P
a)
To determine
The change in volume of
1.00 m 3
water which is taken from the surface to the bottom of the pacific.
b)
To determine
The density of water at the bottom.
c)
To determine
When it is a good approximation to think water as incompressible.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Given two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.)
Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?
(a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three
decimal places.)
0.42
× cm
(b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification?
15
× cm
In a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal
close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.)
0.98 x m
Chapter 9 Solutions
College Physics
Ch. 9.2 - Suppose you have one cubic meter of gold, two...Ch. 9.4 - The pressure at the bottom of a glass filled with...Ch. 9.5 - Several common barometers are built using a...Ch. 9.5 - Blood pressure is normally measured with the cuff...Ch. 9.6 - Atmospheric pressure varies from day to day. The...Ch. 9.6 - The density of lead is greater than iron, and both...Ch. 9.7 - You observe two helium balloons floating next to...Ch. 9 - Physics Review A soap bubble hovers motionlessly...Ch. 9 - Physics Review A team of huskies performs 7 440 J...Ch. 9 - Prob. 3WUE
Ch. 9 - Prob. 4WUECh. 9 - Humans can bite with a force of approximately 800...Ch. 9 - A hydraulic jack has an input piston of area 0.050...Ch. 9 - Prob. 7WUECh. 9 - Prob. 8WUECh. 9 - Prob. 9WUECh. 9 - A horizontal pipe narrows from a radius of 0.250 m...Ch. 9 - A large water tank is 3.00 m high and filled lo...Ch. 9 - Prob. 1CQCh. 9 - The density of air is 1.3 kg/m3 at sea level. From...Ch. 9 - Why do baseball home run hitters like to play in...Ch. 9 - Figure CQ9.4 shows aerial views from directly...Ch. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Suppose a damaged ship just barely floats in the...Ch. 9 - During inhalation, the pressure in the lungs is...Ch. 9 - The water supply for a city is often provided from...Ch. 9 - An ice cube is placed in a glass of water. What...Ch. 9 - Place two cans of soft drinks, one regular and one...Ch. 9 - Will an ice cube float higher in water or in an...Ch. 9 - Prob. 13CQCh. 9 - Prob. 14CQCh. 9 - A person in a boat floating in a small pond throws...Ch. 9 - One of the predicted problems due to global...Ch. 9 - Prob. 1PCh. 9 - Prob. 3PCh. 9 - Calculate the mass of a solid gold rectangular bar...Ch. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Suppose a distant world with surface gravity of...Ch. 9 - Evaluate Young's modulus for the material whose...Ch. 9 - The Deformation of Solids 65. A 200.-kg load is...Ch. 9 - Comic-book superheroes are sometimes able to punch...Ch. 9 - A plank 2.00 cm thick and 15.0 cm wide is firmly...Ch. 9 - Assume that if the shear stress in steel exceeds...Ch. 9 - For safety in climbing, a mountaineer uses a nylon...Ch. 9 - A stainless-steel orthodontic: wire is applied to...Ch. 9 - Bone has a Youngs modulus of 18 109 Pa. Under...Ch. 9 - A high-speed lifting mechanism supports an 800.-kg...Ch. 9 - Prob. 17PCh. 9 - The total cross-sectional area of the load-bearing...Ch. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - (a) Calculate the absolute pressure at the bottom...Ch. 9 - Mercury is poured into a U-tube as shown in Figure...Ch. 9 - A collapsible plastic bag (Fig. F9.11) contains a...Ch. 9 - Prob. 24PCh. 9 - A container is filled to a depth of 20.0 cm with...Ch. 9 - Blaise Pascal duplicated Torricellis barometer...Ch. 9 - Figure P9.27 shows the essential parts of a...Ch. 9 - Piston in Figure P9.16 has a diameter of 0.25...Ch. 9 - Buoyant Forces and Archimedes Principle A...Ch. 9 - The average human has a density of 945 kg/m3 after...Ch. 9 - A small ferryboat is 4.00 m wide and 6.00 m long....Ch. 9 - A 62.0-kg survivor of a cruise line disaster rests...Ch. 9 - A wooden block of volume 5.24 104 m3 floats in...Ch. 9 - A large balloon of mass 226 kg is filled with...Ch. 9 - A spherical weather balloon is filled with...Ch. 9 - A man of mass m = 70.0 kg and having a density of ...Ch. 9 - On October 21, 2001, Ian Ashpole of the United...Ch. 9 - The gravitational force exerted on a solid object...Ch. 9 - A cube of wood having an edge dimension of 20.0 cm...Ch. 9 - A light spring of force constant k = 160 N/m rests...Ch. 9 - A sample of an unknown material appears to weigh...Ch. 9 - An object weighing 300 N in air is immersed in...Ch. 9 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 9 - Wafer flowing through a garden hose of diameter...Ch. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - A hypodermic syringe contain a medicine with the...Ch. 9 - When a person inhales, air moves down the bronchus...Ch. 9 - A jet airplane in level flight has a mass of 8.66 ...Ch. 9 - An airplane has a mass M, and the two wings have a...Ch. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - A jet of water squirts out horizontally from a...Ch. 9 - A large storage tank, open to the atmosphere at...Ch. 9 - The inside diameters of the larger portions of the...Ch. 9 - Water is pumped through a pipe of diameter 15.0 cm...Ch. 9 - Old Faithful geyser in Yellowstone Park erupts at...Ch. 9 - The Venturi tube shown in Figure P9.48 may be used...Ch. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - A certain fluid has a density of 1.080 kg/m3 and...Ch. 9 - Whole blood has a surface tension of 0.058 N/m and...Ch. 9 - Prob. 63PCh. 9 - Prob. 64PCh. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - Spherical panicles of a protein of density 1.8...Ch. 9 - A hypodermic needle is 3.0 era in length and 0.30...Ch. 9 - Prob. 69PCh. 9 - Prob. 70PCh. 9 - The aorta in humans has a diameter of about 2.0...Ch. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Glycerin in water diffuses along a horizontal...Ch. 9 - Prob. 75PCh. 9 - Small spheres of diameter 1.00 mm fall through 20C...Ch. 9 - An iron block of volume 0.20 m5 is suspended from...Ch. 9 - The true weight of an object can be measured in a...Ch. 9 - As a first approximation. Earth's continents may...Ch. 9 - Prob. 80APCh. 9 - Prob. 81APCh. 9 - Superman attempts to drink water through a very...Ch. 9 - The human brain and spinal cord are immersed in...Ch. 9 - A Hydrometer is an instrument used to determine...Ch. 9 - Prob. 85APCh. 9 - A helium-filled balloon, whose envelope has a mass...Ch. 9 - A light spring of constant A = 90.0 N/m is...Ch. 9 - A U-tube open at both ends is partially filled...Ch. 9 - In about 1657. Otto von Guericke, inventor of the...Ch. 9 - Oil having a density of 930 kg/m3 floats on water....Ch. 9 - Prob. 91AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Don't use ai to answer I will report you answerarrow_forwardA shopper standing 2.00 m from a convex security mirror sees his image with a magnification of 0.200. (Explicitly show on paper how you follow the steps in the Problem-Solving Strategy for mirrors found on page 1020. Your instructor may ask you to turn in this work.) (a) Where is his image (in m)? (Use the correct sign.) -0.4 m in front of the mirror ▾ (b) What is the focal length (in m) of the mirror? -0.5 m (c) What is its radius of curvature (in m)? -1.0 marrow_forwardAn amoeba is 0.309 cm away from the 0.304 cm focal length objective lens of a microscope.arrow_forward
- Two resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10Is. Let r be the ratio R1/R2. Find r. I know you have to find the equations for V for both situations and relate them, I'm just struggling to do so. Please explain all steps, thank you.arrow_forwardBheem and Ram, jump off either side of a bridge while holding opposite ends of a rope and swing back and forth under the bridge to save a child while avoiding a fire. Looking at the swing of just Bheem, we can approximate him as a simple pendulum with a period of motion of 5.59 s. How long is the pendulum ? When Bheem swings, he goes a full distance, from side to side, of 10.2 m. What is his maximum velocity? What is his maximum acceleration?arrow_forwardThe position of a 0.300 kg object attached to a spring is described by x=0.271 m ⋅ cos(0.512π⋅rad/s ⋅t) (Assume t is in seconds.) Find the amplitude of the motion. Find the spring constant. Find the position of the object at t = 0.324 s. Find the object's velocity at t = 0.324 s.arrow_forward
- Min Min is hanging from her spring-arms off the edge of the level. Due to the spring like nature of her arms she is bouncing up and down in simple harmonic motion with a maximum displacement from equilibrium of 0.118 m. The spring constant of Min-Min’s arms is 9560. N/m and she has a mass of 87.5 kg. What is the period at which she oscillates? Find her maximum speed. Find her speed when she is located 5.00 cm from her equilibrium position.arrow_forward(a) What magnification in multiples is produced by a 0.150 cm focal length microscope objective that is 0.160 cm from the object being viewed? 15.9 (b) What is the overall magnification in multiples if an eyepiece that produces a magnification of 7.90x is used? 126 × ×arrow_forwardGravitational Potential Energyarrow_forward
- E = кедо Xo A continuous line of charge lies along the x axis, extending from x = +x to positive infinity. The line carries positive charge with a uniform linear charge density 10. (a) What is the magnitude of the electric field at the origin? (Use the following as necessary: 10, Xo, and ke.) (b) What is the direction of the electric field at the origin? O O O O O O G -y +z ○ -z +x -x +yarrow_forwardInclude free body diagramarrow_forward2 Spring 2025 -03 PITT Calculate the acceleration of a skier heading down a 10.0° slope, assuming the coefficient of cold coast at a constant velocity. You can neglect air resistance in both parts. friction for waxed wood on wet snow fly 0.1 (b) Find the angle of the slope down which this skier Given: 9 = ? 8=10° 4=0.1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY