Consider a golf club hitting a golf ball. To a good approximation, we can model this as a collision between the rapidly moving head of the golf club and the stationary golf ball, ignoring the shaft of the club and the golfer.
A golf ball has a mass of 46 g. Suppose a 200 g club head is moving at a speed of 40 m/s just before striking the golf ball. After the collision, the golf ball’s speed is 60 m/s.
81. A manufacturer makes a golf ball that compresses more than a traditional golf ball when struck by a club. How will this affect the average force during the collision?
A. The force will decrease.
B. The force will not be affected.
C. The force will increase.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
COLLEGE PHYSICS:STRATEGIC APPR.AP ED.
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Applications and Investigations in Earth Science (9th Edition)
Human Anatomy & Physiology (2nd Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Introductory Chemistry (6th Edition)
- A model rocket is shot straight up and explodes at the top of its trajectory into three pieces as viewed from above and shown in Figure P10.44. The masses of the three pieces are mA = 100.0 g, mB = 20.0 g, and mC = 30.0 g. Immediately after the explosion, piece A is traveling at 1.50 m/s, and piece B is traveling at 7.00 m/s in a direction 30 below the negative x axis as shown. What is the velocity of piece C? FIGURE P10.44 Problems 44 and 45. 45. We can use the conservation of momentum (Eq. 10.9). The total initial momentum is zero, so the sum of all the final momenta should be zero. mAvAf+mBvBf+mCvCf=0 This velocities for A and B can be expressed as vectors. vAf=1.50jm/svBf=(7.00im/s)cos30(7.00jm/s)sin30=(6.06i3.50j)m/s We can now solve the momentum equation. (100.0g)(1.50jm/s)+(20.0g)(6.06i3.50j)m/s+(30.0g)vCf=0vCf=(4.04i2.67j)m/s The velocity of piece C is down and to the right as expected.arrow_forwardThe space shuttle uses its thrusters with an exhaust velocity of 4440 m/s. The shuttle is initially at rest in space and accelerates to a final speed of 1.00 km/s. a. What percentage of the initial mass of the shuttle (including the full fuel tank) must be ejected to reach that speed? b. If the mass of the shuttle and fuel is initially 1.85 106 kg, how much fuel is expelled?arrow_forwardTwo pucks in a laboratory are placed on an air table. Puck 1 has twice the mass of puck 2. They are pushed toward each other and strike in a head-on collision. Initially, puck 2 is twice as fast as puck 1. a. What is the total momentum before the collision? b. What is the center-of-mass velocity before the collision? c. If the pucks are initially 2.70 m apart, how far did puck 1 move before the collision?arrow_forward
- N A bomb explodes into three pieces A, B, and C of equal mass. Piece A flies with a speed of 40.0 m/s, and piece B with a speed of 30.0 m/s at an angle of 90° relative to the direction of A as shown in Figure P11.57. Determine the speed of piece C and the direction of its velocity relative to the direction of piece A.arrow_forwardA proton with an initial speed of 2.00 108 m/s in the x direction collides elastically with another proton initially at rest. The first protons velocity after the collision is 1.64 108 m/s at an angle of 35.0 with the horizontal. What is the velocity of the second proton after the collision?arrow_forwardA ball of mass 50.0 g is dropped from a height of 10.0 m. It rebounds after losing 75% of its kinetic energy during the collision process. If the collision with the ground took 0.010 s, find the magnitude of the impulse experienced by the ball.arrow_forward
- One object (m1 = 0.200 kg) is moving to the right with a speed of 2.00 m/s when it is struck from behind by another object (m2 = 0.300 kg) that is moving to the right at 6.00 m/s. If friction is negligible and the collision between these objects is elastic, find the final velocity of each.arrow_forwardIn Figure P11.51, a cue ball is shot toward the eight-ball on a pool table. The cue ball is shot at the eight-ball with a speed of 8.00 m/s in a direction 30.0 from the y axis. Both balls have the same mass of 0.170 kg. After the balls undergo an elastic collision, the eight-ball travels in the negative x direction into the side pocket. What is the velocity of the cue ball after this collision? FIGURE P11.51arrow_forwardA crate of mass M is initially at rest on a frictionless, level table. A small block of mass m (m M) moves toward the crate as shown in Figure P10.31. Later, the block and crate are stuck together and are moving with some final speed. The momentum of the blockcrate system is the same both before and after the collision. Is the magnitude of the change in momentum of the crate greater than, less than, or equal to the magnitude of the change in the momentum of the block? Explain. FIGURE P10.31arrow_forward
- In an experiment designed to determine the velocity of a bullet fired by a certain gun, a wooden block of mass M = 500.0 g is supported only by its edges, and a bullet of mass m = 8.00 g is fired vertically upward into the block from close range below. After the bullet embeds itself in the block, the block and the bullet are measured to rise to a maximum height of 25.0 cm above the blocks original position. What is the speed of the bullet just before impact?arrow_forwardA tennis player receives a shot with the ball (0.060 0 kg) traveling horizontally at 50.0 m/s and returns the shot with the ball traveling horizontally at 40.0 m/s in the opposite direction. (a) What is the impulse delivered to the ball by the tennis racquet? (b) What work does the racquet do on the ball?arrow_forwardA mother pushes her son in a stroller at a constant speed of 1.52 m/s. The boy tosses a 56.7-g tennis ball straight up at 1.75 m/s and catches it. The boys father sits on a bench and watches. a. According to the mother, what are the balls initial and final momenta? b. According to the father, what are the balls initial and final momenta? c. According to the mother, is the balls momentum ever zero? If so, when? If not, why not? d. According to the father, is the balls momentum ever zero? If so, when? If not, why not?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University