Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 81P
A 14-kg projectile is launched at 380 m/s at a 55° angle to the horizontal. At the peak of its trajectory it collides with a second projectile moving horizontally, in the opposite direction, at 140 m/s. The two stick together and land 9.6 km horizontally down-range from the first projectile’s launch point. Find the mass of the second projectile.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rocket that is in deep space and initially at rest relative to an inertial reference frame has a mass of 2.55* 105 kg, of which 1.81* 105 kg is fuel. The rocket engine is then fired for 250 s while fuel is consumed at the rate of 480 kg/s. The speed of the exhaust products relative to the rocket is 3.27 km/s. (a) What is the rocket’s thrust? After the 250 s firing, what are (b) the mass and (c) the speed of the rocket?
A rocket, which is in deep space and initially at rest relative to an inertial reference frame, has a mass of 75.8 x 105 kg, of which 15.3 ×
105 kg is fuel. The rocket engine is then fired for 410 s, during which fuel is consumed at the rate of 390 kg/s. The speed of the exhaust
products relative to the rocket is 2.81 km/s. (a) What is the rocket's thrust? After the 410 s firing, what are (b) the mass and (c) the
speed of the rocket?
(a) Number
i
Units
(b) Number
i
Units
(c) Number
i
Units
A projectile is fired with a speed of 60m/s at an angle of 60 degrees from the ground surface. A second projectile is then fired with the same speed 0.50 seconds later. Find the angle that the second projectile must be fired so that the two particles will collide.
Chapter 9 Solutions
Essential University Physics (3rd Edition)
Ch. 9.1 - Prob. 9.1GICh. 9.2 - A 500-g fireworks rocket is moving with velocity...Ch. 9.2 - Two skaters toss a basketball back and forth on...Ch. 9.3 - Which of the following systems has (1) zero...Ch. 9.4 - Which of the following qualifies as a collision?...Ch. 9.5 - Which of the following collisions qualify as...Ch. 9.6 - One ball is at rest on a level floor. A second...Ch. 9 - Roughly where is your center of mass when youre...Ch. 9 - Prob. 2FTDCh. 9 - Prob. 3FTD
Ch. 9 - The momentum of a system of pool balls is the same...Ch. 9 - An hourglass is inverted and placed on a scale....Ch. 9 - Why are cars designed so that their front ends...Ch. 9 - Give three everyday examples of inelastic...Ch. 9 - Is it possible to have an inelastic collision in...Ch. 9 - Prob. 9FTDCh. 9 - Why dont we need to consider external forces...Ch. 9 - How is it possible to have a collision between...Ch. 9 - A pitched baseball moves no faster than the...Ch. 9 - Two identical satellites are going in opposite...Ch. 9 - Prob. 14ECh. 9 - Two particles of equal mass m are at the vertices...Ch. 9 - Rework Example 9.1 with the origin at the center...Ch. 9 - Prob. 17ECh. 9 - Prob. 18ECh. 9 - A popcorn kernel at rest in a hot pan bursts into...Ch. 9 - A 60-kg skater, at rest on frictionless ice,...Ch. 9 - A plutonium-239 nucleus at rest decays into a...Ch. 9 - A toboggan of mass 8.6 kg is moving horizontally...Ch. 9 - A 150-g trick baseball is thrown at 60 km/h. It...Ch. 9 - An object with kinetic energy K explodes into two...Ch. 9 - Two 140-kg satellites collide at an altitude where...Ch. 9 - High-speed photos of a 220-g flea jumping...Ch. 9 - Youre working in mission control for an...Ch. 9 - In a railroad switchyard, a 56-ton freight car is...Ch. 9 - In a totally inelastic collision between two equal...Ch. 9 - Prob. 30ECh. 9 - Two identical trucks have mass 5500 kg when empty,...Ch. 9 - An alpha particle (4He) strikes a stationary gold...Ch. 9 - Playing in the street, a child accidentally tosses...Ch. 9 - A block of mass m undergoes a one-dimensional...Ch. 9 - A proton moving at 6.9 Mm/s collides elastically...Ch. 9 - A head-on, elastic collision between two particles...Ch. 9 - Find the center of mass of a pentagon with five...Ch. 9 - Wildlife biologists fire 20-g rubber bullets to...Ch. 9 - Consider a system of three equal-mass particles...Ch. 9 - Youre with 19 other people on a boat at rest in...Ch. 9 - A hemispherical bowl is at rest on a frictionless...Ch. 9 - Physicians perform needle biopsies to sample...Ch. 9 - Find the center of mass of the uniform, solid cone...Ch. 9 - A firecracker, initially at rest, explodes into...Ch. 9 - An 11,000-kg freight car rests against a spring...Ch. 9 - On an icy road, a 1200-kg car moving at 50 km/h...Ch. 9 - A 1250-kg car is moving with velocity...Ch. 9 - Masses m and 3m approach at the same speed v and...Ch. 9 - A 238U nucleus is moving in the x-direction at 5.0...Ch. 9 - A cylindrical concrete silo is 4.0 m in diameter...Ch. 9 - A 42-g firecracker is at rest at the origin when...Ch. 9 - A 60-kg astronaut floating in space simultaneously...Ch. 9 - Assuming equal-mass pieces in Exercise 24, find...Ch. 9 - A 62-kg sprinter stands on the left end of a...Ch. 9 - Youre a production engineer in a cookie factory,...Ch. 9 - Mass m, moving at speed 2v, approaches mass 4m,...Ch. 9 - Verify explicitly that kinetic energy is conserved...Ch. 9 - While standing on frictionless ice, you (mass 65.0...Ch. 9 - Youre an accident investigator at a scene where a...Ch. 9 - A fireworks rocket is launched vertically upward...Ch. 9 - Two objects moving in opposite directions with the...Ch. 9 - Explosive bolts separate a 950-kg communications...Ch. 9 - Youre working in quality control for a model...Ch. 9 - Youre investigating an accident in which a 1040-kg...Ch. 9 - A 400-mg popcorn kernel is skittering across a...Ch. 9 - Two identical objects with the same initial speed...Ch. 9 - A proton (mass 1 u) moving at 6.90 Mm/s collides...Ch. 9 - Two objects, one initially at rest, undergo a...Ch. 9 - Blocks B and C have masses 2m and m, respectively,...Ch. 9 - Derive Equation 9.15b.Ch. 9 - An object collides elastically with an equal-mass...Ch. 9 - A proton (mass 1 u) collides elastically with a...Ch. 9 - Two identical billiard balls are initially at rest...Ch. 9 - Find an expression for the impulse imparted by a...Ch. 9 - A 32-u oxygen molecule (O2) moving in the...Ch. 9 - A 114-g Frisbee is lodged on a tree branch 7.65 m...Ch. 9 - You set a small ball of mass m atop a large ball...Ch. 9 - A car moving at speed v undergoes a...Ch. 9 - A 200-g block is released from rest at a height of...Ch. 9 - A 14-kg projectile is launched at 380 m/s at a 55...Ch. 9 - During a crash test, a car moving at 50 km/h...Ch. 9 - Use numerical or graphical techniques to estimate...Ch. 9 - A block of mass m1 undergoes a one-dimensional...Ch. 9 - Two objects of unequal mass, one initially at...Ch. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - In a ballistic pendulum demonstration gone bad, a...Ch. 9 - An 80-kg astronaut has become detached from the...Ch. 9 - Prob. 90PCh. 9 - A thin rod extends from x = 0 to x = L. It carries...Ch. 9 - Model rocket motors are specified by giving the...Ch. 9 - A block of mass M is moving at speed r0 on a...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
50 (I) A centrifuge rotor has a moment of inertia of 3 25 x 10-2 kg.m2. How much energy is required to bring it...
Physics: Principles with Applications
Choose the best answer to each of the following. Explain your reasoning. a photograph of a cluster of galaxies ...
Cosmic Perspective Fundamentals
A meter stick lies on the bottom of the rectangular tank in Fig. 30.20, with its zero mark at the tanks left ed...
Essential University Physics: Volume 2 (3rd Edition)
7. 7 Which of the following statements about radio waves, infrared radiation, and x rays are correct? (There ma...
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- From what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forwardA rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forwardHow much fuel would be needed for a 1000-kg rocket (this is its mass with no fuel) to take off from Earth and reach 1000 m/s in 30 s? The exhaust speed is 1000 m/s.arrow_forward
- Two figure skaters are coasting in the same direction, with the leading skater moving at 5.5 m/s and the trailing skating moving at 6.2 m/s. When the trailing skater catches up with the leading skater, he picks her up without applying any horizontal forces on his skates. If the trailing skater is 50 heavier than the 50-kg leading skater, what is their speed after he picks her up?arrow_forwardTo lift off from the Moon, a 9.50 105 kg rocket needs a thrust larger than the force of gravity. If the exhaust velocity is 4.25 103 m/s, at what rate does the exhaust need to be expelled to provide sufficient thrust? The acceleration due to gravity on the Moon is 1.62 m/s2.arrow_forwardA model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is the average exhaust speed of the engine? (b) This engine is placed in a rocket body of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest in outer space by an astronaut on a spacewalk? Assume the fuel burns at a constant rate.arrow_forward
- A 100-g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 72-g piece is projected horizontally to the left at 20 m/s, what is the speed and direction of the other piece?arrow_forwardA rocket, which is in deep space and initially at rest relative to an inertial reference frame, has a mass of 84.7 × 105 kg, of which 6.79 × 105 kg is fuel. The rocket engine is then fired for 380 s, during which fuel is consumed at the rate of 380 kg/s. The speed of the exhaust products relative to the rocket is 3.26 km/s. (a) What is the rocket's thrust? After the 380 s firing, what are (b) the mass and (c) the speed of the rocket? (a) Number (b) Number (c) Number H. Units Units Unitsarrow_forwardA rocket, which is in deep space and initially at rest relative to an inertial reference frame, has a mass of 78.4 × 105 kg, of which 8.68 × 105 kg is fuel. The rocket engine is then fired for 340 s, during which fuel is consumed at the rate of 340 kg/s. The speed of the exhaust products relative to the rocket is 3.78 km/s. (a) What is the rocket's thrust? After the 340 s firing, what are (b) the mass and (c) the speed of the rocket? (a) Number 1290000 Units N (b) Number 7720000 Units kg (c) Number 3830 Units m/sarrow_forward
- A 10 kg projectile was launched at the horizontal ground at a velocity of 20 m/s, 10 degrees with respect to the horizontal. The projectile hit a 30 kg box on top of a table at 0.177 seconds. If the box developed a speed of 5.140 m/s after impact, what is the speed of the projectile after the collision? Please include FBD.arrow_forwardA rocket, which is in deep space and initially at rest relative to an inertial reference frame, has a mass of 86.2 × 105 kg, of which 14.7 × 105 kg is fuel. The rocket engine is then fired for 180 s, during which fuel is consumed at the rate of 480 kg/s. The speed of the exhaust products relative to the rocket is 2.98 km/s. (a) What is the rocket's thrust? After the 180 s firing, what are (b) the mass and (c) the speed of the rocket?arrow_forwardA rocket, which is in deep space and initially at rest relative to an inertial reference frame, has a mass of 56.7 × 105 kg, of which 12.9 × 105 kg is fuel. The rocket engine is then fired for 310 s, during which fuel is consumed at the rate of 470 kg/s. The speed of the exhaust products relative to the rocket is 2.16 km/s. (a) What is the rocket's thrust? After the 310 s firing, what are (b) the mass and (c) the speed of the rocket?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Elastic and Inelastic Collisions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=M2xnGcaaAi4;License: Standard YouTube License, CC-BY