
EBK COLLEGE PHYSICS
4th Edition
ISBN: 8220106755235
Author: Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 6P
To determine
To find: The final speed of the rocket.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Calculate the value of the force F at which the 20 kg uniformly dense cabinet
will start to tip. Calculate the acceleration of the cabinet at this force F. Must
include the FBD and KD of the system. Ignore friction.
1) A 2.0 kg toy car travelling along a smooth horizontal surface experiences a horizontal force Fas shown in the
picture to the left. Assuming the rightward direction to be positive and if the car has an initial velocity of 60.0m/s
to the right, calculate the velocity of the car after the first 10.0s of motion. (Force is in Newtons and time in
seconds). (Hint: Use impulse-momentum theorem)
F
5.0
10
0
-10
3) Two bumper cars of masses 600 kg and 900 kg travelling (on a smooth surface) with velocities 8m/s and 4 m/s
respectively, have a head on collision. If the coefficient of restitution is 0.5. a) What sort of collision is this? b)
Calculate their velocities immediately after collision. c) If the coefficient of restitution was 1 instead of 0.5, what
is the amount of energy lost during collision?
Chapter 9 Solutions
EBK COLLEGE PHYSICS
Ch. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Two pucks, of mass m and 4m, lie on a frictionless...Ch. 9 - Prob. 4CQCh. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - Two students stand at rest, facing each other on...Ch. 9 - A 2 kg cart rolling to the right at 3 m/s runs...Ch. 9 - Automobiles are designed with crumple zones...
Ch. 9 - You probably know that it feels better to catch a...Ch. 9 - In the early days of rocketry, some people claimed...Ch. 9 - Two ice skaters, Megan and Jason, push off from...Ch. 9 - Suppose a rubber ball and a steel ball collide....Ch. 9 - While standing still on a basketball court, you...Ch. 9 - To win a prize at the county fair, youre trying to...Ch. 9 - Monica stands at the edge of a circular platform...Ch. 9 - If the earth warms significantly, the polar ice...Ch. 9 - Prob. 21CQCh. 9 - Prob. 23MCQCh. 9 - Curling is a sport played with 20 kg stones that...Ch. 9 - Prob. 25MCQCh. 9 - Prob. 26MCQCh. 9 - Prob. 27MCQCh. 9 - A 4.0-m-diameter playground merry-go-round, with a...Ch. 9 - A disk rotates freely on a vertical axis with an...Ch. 9 - At what speed do a bicycle and its rider, with a...Ch. 9 - Prob. 2PCh. 9 - A 57 g tennis ball is served at 45 m/s. If the...Ch. 9 - Prob. 4PCh. 9 - A student throws a 120 g snowball at 7.5 m/s at...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Use the impulse-momentum theorem to find how long...Ch. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - A child is sliding on a sled at 1.5 m/s to the...Ch. 9 - Prob. 14PCh. 9 - As part of a safety investigation, two 1400 kg...Ch. 9 - In a Little League baseball game, the 145 g ball...Ch. 9 - Prob. 18PCh. 9 - A small, 100 g cart is moving at 1.20 m/s on a...Ch. 9 - Prob. 20PCh. 9 - A 2.7 kg block of wood sits on a frictionless...Ch. 9 - Prob. 22PCh. 9 - A 10,000 kg railroad car is rolling at 2.00 m/s...Ch. 9 - Prob. 24PCh. 9 - A 55 kg hunter, standing on frictionless ice,...Ch. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - A 71 kg baseball player jumps straight up to catch...Ch. 9 - Prob. 30PCh. 9 - A kid at the junior high cafeteria wants to propel...Ch. 9 - The parking brake on a 2000 kg Cadillac has...Ch. 9 - A 2.0 kg block slides along a frictionless surface...Ch. 9 - Erica (36 kg) and Danny (47 kg) are bouncing on a...Ch. 9 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 9 - Prob. 37PCh. 9 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 9 - A firecracker in a coconut blows the coconut into...Ch. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Divers change their body position in midair while...Ch. 9 - Prob. 43PCh. 9 - What is the angular momentum of the moon around...Ch. 9 - Prob. 46GPCh. 9 - Prob. 47GPCh. 9 - Prob. 48GPCh. 9 - Prob. 49GPCh. 9 - Prob. 50GPCh. 9 - Prob. 51GPCh. 9 - A 140 g baseball is moving horizontally to the...Ch. 9 - A tennis player swings her 1000 g racket with a...Ch. 9 - A 20 g ball of clay is thrown horizontally at 30...Ch. 9 - Dan is gliding on his skateboard at 4.0 m/s. He...Ch. 9 - Ethan, whose mass is 80 kg, stands at one end of a...Ch. 9 - Three identical train cars, coupled together, are...Ch. 9 - A 110 kg linebacker running at 2.0 m/s and an 82...Ch. 9 - Most geologists believe that the dinosaurs became...Ch. 9 - Two ice skaters, with masses of 75 kg and 55 kg,...Ch. 9 - Prob. 62GPCh. 9 - One billiard ball is shot east at 2.00 m/s. A...Ch. 9 - A 10 g bullet is fired into a 10 kg wood block...Ch. 9 - A typical raindrop is much more massive than a...Ch. 9 - A 15 g bullet is fired at 610 m/s into a 4.0 kg...Ch. 9 - Prob. 67GPCh. 9 - Two 500 g blocks of wood are 2.0 m apart on a...Ch. 9 - A spaceship of mass 2.0 106 kg is cruising at a...Ch. 9 - At the county fair, Chris throws a 0.15 kg...Ch. 9 - Prob. 73GPCh. 9 - The carbon isotope 14C is used for carbon dating...Ch. 9 - Prob. 75GPCh. 9 - A 2.0 kg, 20-cm-diameter turntable rotates at 100...Ch. 9 - Prob. 77GPCh. 9 - A 3.0-m-diameter merry-go-round with a mass of 250...Ch. 9 - Disk A, with a mass of 2.0 kg and a radius of 40...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...
Knowledge Booster
Similar questions
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardGive a more general expression for the magnitude of the torque τ. Rewrite the answer found in Part A in terms of the magnitude of the magnetic dipole moment of the current loop m. Define the angle between the vector perpendicular to the plane of the coil and the magnetic field to be ϕ, noting that this angle is the complement of angle θ in Part A. Give your answer in terms of the magnetic moment mm, magnetic field B, and ϕ.arrow_forwardCalculate the electric and magnetic energy densities at thesurface of a 3-mm diameter copper wire carrying a 15-A current. The resistivity ofcopper is 1.68×10-8 Ω.m.Prob. 18, page 806, Ans: uE= 5.6 10-15 J/m3 uB= 1.6 J/m3arrow_forward
- A 15.8-mW laser puts out a narrow beam 2.0 mm in diameter.Suppose that the beam is in free space. What is the rms value of E in the beam? What isthe rms value of B in the beam?Prob. 28, page 834. Ans: Erms= 1380 V/m, Brms =4.59×10-6 Tarrow_forwardA 4.5 cm tall object is placed 26 cm in front of a sphericalmirror. It is desired to produce a virtual image that is upright and 3.5 cm tall.(a) What type of mirror should be used, convex, or concave?(b) Where is the image located?(c) What is the focal length of the mirror?(d) What is the radius of curvature of the mirror?Prob. 25, page 861. Ans: (a) convex, (b) di= -20.2 cm, i.e. 20.2 cm behind the mirror,(c) f= -90.55 cm, (d) r= -181.1 cm.arrow_forwardA series RCL circuit contains an inductor with inductance L=3.32 mH, and a generator whose rms voltage is 11.2 V. At a resonant frequencyof 1.25 kHz the average power delivered to the circuit is 26.9 W.(a) Find the value of the capacitance.(b) Find the value of the resistance.(c) What is the power factor of this circuit?Ans: C=4.89 μF, R=4.66 Ω, 1.arrow_forward
- A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.70 km/s in the +x-direction experiences a force of 2.06×10−16 N in the +y-direction, and an electron moving at 4.40 km/s in the −z-direction experiences a force of 8.10×10−16 N in the +y-direction. What is the magnitude of the magnetic force on an electron moving in the −y-direction at 3.70 km/s ? What is the direction of this the magnetic force? (in the xz-plane)arrow_forwardA particle with a charge of −5.20 nC is moving in a uniform magnetic field of B =−( 1.22 T )k^. The magnetic force on the particle is measured to be F=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the x component of the velocity of the particle.arrow_forwardIs it possible for average velocity to be negative?a. Yes, in cases when the net displacement is negative.b. Yes, if the body keeps changing its direction during motion.c. No, average velocity describes only magnitude and not the direction of motion.d. No, average velocity describes only the magnitude in the positive direction of motion.arrow_forward
- Tutorial Exercise An air-filled spherical capacitor is constructed with an inner-shell radius of 6.95 cm and an outer-shell radius of 14.5 cm. (a) Calculate the capacitance of the device. (b) What potential difference between the spheres results in a 4.00-μC charge on the capacitor? Part 1 of 4 - Conceptualize Since the separation between the inner and outer shells is much larger than a typical electronic capacitor with separation on the order of 0.1 mm and capacitance in the microfarad range, we expect the capacitance of this spherical configuration to be on the order of picofarads. The potential difference should be sufficiently low to avoid sparking through the air that separates the shells. Part 2 of 4 - Categorize We will calculate the capacitance from the equation for a spherical shell capacitor. We will then calculate the voltage found from Q = CAV.arrow_forwardI need help figuring out how to do part 2 with the information given in part 1 and putting it in to the simulation. ( trying to match the velocity graph from the paper onto the simulation to find the applied force graph) Using this simulation https://phet.colorado.edu/sims/cheerpj/forces-1d/latest/forces-1d.html?simulation=forces-1d.arrow_forwardI need help running the simulation to get the result needed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON