Concept explainers
Brackets, such as the one shown, are used in mooring small watercraft. Failure of such brackets is usually caused by bearing pressure of the mooring clip against the side of the hole. Our purpose here is to get an idea of the static and dynamic margins of safety involved. We use a bracket 1/4 in thick made of hot-rolled 1018 steel, welded with an E6010 electrode. We then
assume wave action on the boat will create force F no greater than 1200 lbf.
(a) Determine the moment M of the force F about the centroid of the weld G. This moment produces a shear stress on the throat resisting bending action with a “tension” at A and “compression” at C.
(b) Find the force component Fy that produces a shear stress at the throat resisting a “tension” throughout the weld.
(c) Find the force component Fx that produces an in-line shear throughout the weld.
(d) Using Table 9–2, determine A, Iu, and I for the bracket.
(e) Find the shear stress τ1 at A due to Fy and M, the shear stress τ2 due to Fx, and combine to find τ.
(f) Find the factor of safety guarding against shear yielding in the weldment. Since the weld material is comprised of a mix of the electrode material and the base material, take the conservative approach of utilizing the strength of the weaker material.
(g) Find the factor of safety guarding against a static failure in the parent metal at the weld.
(h) Assuming the force F alternates between zero and 1200 lbf, find the factor of safety guarding against a fatigue failure in the weld metal using a Gerber failure criterion.
(a)
The moment
Answer to Problem 52P
The moment
Explanation of Solution
Write the expression for moment about
Here, force is
Conclusion:
Substitute
Thus, the moment
(b)
The force component
Answer to Problem 52P
The force component
Explanation of Solution
Write the expression for component of force
Here, force is
Conclusion:
Substitute
Thus, the force component
(c)
The force component
Answer to Problem 52P
The force component
Explanation of Solution
Write the expression for component of force
Here, force is
Conclusion:
Substitute
Thus, the force component
(d)
The area of throat, unit second moment of area and second area moment by using the Table
Answer to Problem 52P
The throat area is
The unit second moment of area is
The second area moment is
Explanation of Solution
Write the expression for throat area.
Here, thickness of weld is
Write the expression for unit second moment of area.
Here, thickness of weld is
Write the expression for second area moment about an axis
Here, thickness of weld is
Conclusion:
Substitute
Thus, the throat area is
Substitute
Thus, the unit second moment of area is
Substitute
Thus, second area moment is
(e)
The shear stress
The shear stress
The combined maximum shear stress
Answer to Problem 52P
The shear stress
The shear stress
The maximum shear stress is
Explanation of Solution
Write the expression for shear stress due to
Here, force in y-direction is
Write the expression for shear stress due to
Here, force in x-direction is
Write the expression for resultant shear stress at the throat plane.
Here, shear stress due to
Write the expression for secondary shear stress.
Here, Moment is
Write the expression for maximum shear stress.
Here, resultant shear stress at the throat plane is
Conclusion:
Substitute
Thus, the shear stress
Substitute
Thus, the shear stress
Substitute
Substitute
Substitute
Thus, the maximum shear stress is
(f)
The factor of safety guarding against shear yielding in the weldment.
Answer to Problem 52P
The factor of safety guarding against shear yielding in the weldment is
Explanation of Solution
Write the expression for factor of safety against guiding against shear yielding in weldment.
Here, yield stress is
Conclusion:
Refer to member of
Substitute
Thus, the factor of safety guarding against shear yielding in the weldment is
(g)
The factor of safety guarding against a static failure in the parent metal at the weld.
Answer to Problem 52P
The factor of safety guarding against a static failure in the parent metal at the weld is
Explanation of Solution
Write the expression for shear stress.
Here, force along x-direction is
Write the expression for normal stress along y-direction.
Here, force along x-direction is
Write the expression for von misses stress theory.
Here, normal stress is
Write the expression for factor of safety.
Here, yield stress is
Conclusion:
Substitute
Substitute
Substitute
Substitute
Thus, the factor of safety guarding against a static failure in the parent metal at the weld is
(h)
The factor of safety guarding against a fatigue failure in the weld metal using Gerber failure criterion.
Answer to Problem 52P
The factor of safety guarding against a fatigue failure in the weld metal using Gerber failure criterion is
Explanation of Solution
Write the expression for surface factor.
Here, ultimate tensile strength is
Write the expression for effective diameter.
Here, thickness of weld is
Write the expression for size factor.
Here, effective diameter is
Write the expression for equivalent strength.
Here, ultimate tensile strength is
Write the expression for endurance limit.
Here, surface factor is
Write the expression for axial shear stress.
Here, surface factor for shear is
Write the expression for factor of safety of Gerber criterion.
Here, maximum shear is
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the factor of safety guarding against a fatigue failure in the weld metal using Gerber failure criterion is
Want to see more full solutions like this?
Chapter 9 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- 1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forwardA lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forward
- Knowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forwardFind the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forward
- A six cylinder petrol engine has a compression ratio of 5:1. The clearance volume of each cylinder is 110CC. It operates on the four-stroke constant volume cycle and the indicated efficiency ratio referred to air standard efficiency is 0.56. At the speed of 2400 rpm. 44000KJ/kg. Determine the consumes 10kg of fuel per hour. The calorific value of fuel average indicated mean effective pressure.arrow_forwardThe members of a truss are connected to the gusset plate as shown in (Figure 1). The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F= 7.03 Submit ? kN Previous Answers Request Answer × Incorrect; Try Again; 21 attempts remaining ▾ Part B Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. Figure T₂ = 7.03 C T2 |? KN Submit Previous Answers Request Answer × Incorrect; Try Again; 23 attempts remaining Provide Feedbackarrow_forwardConsider the following acid-base reaction: Fe3+(aq) +3H2O -Fe(OH)3 (s) + 3H* ← A. Using thermodynamics, calculate the equilibrium constant K at 25°C (The AG° of formation of Fe(OH)3(s) is -699 kJ/mol). B. Using the value of K you calculated in part a, if a solution contains 10-4 M Fe3+ and has a pH of 7.5, will Fe(OH)3(s) precipitate? Show all calculations necessary to justify your answer. Note that the reaction as written is for precipitation, not dissolution like Ksp-arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning