
EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 51PCE
A 0 726-kg rope 2 00 meters long lies on a floor You grasp one end of the rope and begin lifting it upward with a constant speed of 0.710 m/s. Find the position and velocity of the rope’s center of mass from the time you begin lifting the rope to the time the last piece of rope lifts off the floor. Plot your results. (Assume the rope occupies negligible volume directly below the point where it is being lifted.)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Which of the following is part of the interior of the Sun?
photosphere
the corona
sunspots
radiation zone
Most craters on the surface of the Moon are believed to be caused by which of the following?
faults
asteroids
volcanoes
meteoroids
An object is subjected to a friction force with magnitude 5.49 N, which acts against the object's velocity. What is the work (in J) needed to move the object at constant speed for the following routes?
y (m)
C
B
(5.00, 5.00)
A
x (m)
©
(a) the purple path O to A followed by a return purple path to O
]
(b) the purple path O to C followed by a return blue path to O
]
(c) the blue path O to C followed by a return blue path to O
]
(d) Each of your three answers should be nonzero. What is the significance of this observation?
○ The force of friction is a conservative force.
○ The force of friction is a nonconservative force.
Chapter 9 Solutions
EBK PHYSICS
Ch. 9.1 - Enhance Your Understanding (Answers given at the...Ch. 9.2 - Enhance Your Understanding (Answers given at the...Ch. 9.3 - Enhance Your Understanding (Answers given at the...Ch. 9.4 - Enhance Your Understanding (Answers given at the...Ch. 9.5 - Prob. 5EYUCh. 9.6 - Enhance Your Understanding (Answers given at the...Ch. 9.7 - Enhance Your Understanding (Answers given at the...Ch. 9.8 - Prob. 8EYUCh. 9 - If you drop your Keys, their momentum increases as...Ch. 9 - By what factor does an objects kinetic energy...
Ch. 9 - A system of particles is known to have zero...Ch. 9 - A system of particles is known to have zero...Ch. 9 - On a calm day you connect an electric fan to a...Ch. 9 - Crash statistics show that it is safer to be...Ch. 9 - (a) As you approach a stoplight, you apply the...Ch. 9 - An object at rest on a frictionless surface is...Ch. 9 - (a) Can two objects on a horizontal frictionless...Ch. 9 - Two cars collide at an intersection. If the cars...Ch. 9 - At the instant a bullet is fired from a gun, the...Ch. 9 - Prob. 12CQCh. 9 - In the classic movie The Spirit of St. Louis,...Ch. 9 - A tall, slender drinking glass with a thin base is...Ch. 9 - Prob. 15CQCh. 9 - Prob. 16CQCh. 9 - What is the mass of a mallard duck whose speed is...Ch. 9 - (a) What is the magnitude of the momentum of a...Ch. 9 - A 54 kg person walks due north with a speed of 1.2...Ch. 9 - A 26.2-kg dog is running northward at 2.70 m/s,...Ch. 9 - Predict/Calculate Two air-track carts move toward...Ch. 9 - A 0.145-kg baseball is dropped from rest. If the...Ch. 9 - A 285-g ball falls vertically downward, hitting...Ch. 9 - Object 1 has a mass m1 and a velocity...Ch. 9 - Your car rolls slowly in a parking lot and bangs...Ch. 9 - Predict/Explain A net force of 200 N acts on a...Ch. 9 - Predict/Explain Referring to the previous...Ch. 9 - Predict/Explain Two identical cars, each traveling...Ch. 9 - Force A has a magnitude F and acts for the time t...Ch. 9 - Find the magnitude of the impulse delivered to a...Ch. 9 - A 0.45-kg croquet ball is initially at rest on the...Ch. 9 - When spiking a volleyball, a player changes the...Ch. 9 - Force Platform A force platform measures the...Ch. 9 - Air Bag Safety If a driver makes contact with a...Ch. 9 - To make a bounce pass, a player throws a 0.60-kg...Ch. 9 - BIO Concussion Impulse One study suggests that a...Ch. 9 - Predict/Calculate A 0.14-kg baseball moves toward...Ch. 9 - A player bounces a 0.43-kg soccer ball off her...Ch. 9 - Two ice skaters stand at rest in the center of an...Ch. 9 - A 0.042-kg pet lab mouse sits on a 0.35-kg...Ch. 9 - An object initially at rest breaks into two pieces...Ch. 9 - A 92-kg astronaut and a 1200-kg satellite are at...Ch. 9 - The recoil of a shotgun can be significant....Ch. 9 - A plate drops onto a smooth floor and shatters...Ch. 9 - Suppose the car in Example 9-13 has an initial...Ch. 9 - Two 78.5-kg hockey players skating at 4.47 m/s...Ch. 9 - An air-track cart with mass m1 = 0.32 kg and...Ch. 9 - Predict/Calculate A bullet with a mass of 4.0 g...Ch. 9 - BIO Concussion Recoil The human head can be...Ch. 9 - Two objects moving with a speed v travel in...Ch. 9 - In the apple-orange collision in Example 9-16,...Ch. 9 - A732-kg car stopped at an intersection is...Ch. 9 - The collision between a hammer and a nail can be...Ch. 9 - Predict/Calculate A charging bull elephant with a...Ch. 9 - Prob. 39PCECh. 9 - The three air carts shown in Figure 9-28 have...Ch. 9 - An air-track cart with mass m =0.25 kg and speed...Ch. 9 - Predict/Explain A stalactite in a cave has drops...Ch. 9 - Prob. 43PCECh. 9 - Find the x coordinate of the center of mass of the...Ch. 9 - Prob. 45PCECh. 9 - A pencil standing upright on its eraser end falls...Ch. 9 - Prob. 47PCECh. 9 - The location of the center of mass of the...Ch. 9 - The Center of Mass of Sulfur Dioxide Sulfur...Ch. 9 - Prob. 50PCECh. 9 - A 0 726-kg rope 2 00 meters long lies on a floor...Ch. 9 - Prob. 52PCECh. 9 - Prob. 53PCECh. 9 - Helicopter Thrust During a rescue operation, a...Ch. 9 - Rocks for a Rocket Engine A child sits in a wagon...Ch. 9 - A 57.8-kg person holding two 0.880-kg bricks...Ch. 9 - A fire hose can expel water at a rate of 9.5 kg/s...Ch. 9 - A 0 540-kg bucket rests on a scale Into this...Ch. 9 - Predict/Calculate Holding a long rope by its upper...Ch. 9 - CE Object A has a mass m, object B has a mass 2m,...Ch. 9 - CE Object A has a mass m, object B has a mass 4m,...Ch. 9 - CE A juggler performs a series of tricks with...Ch. 9 - A golfer attempts a birdie putt, sending the 0...Ch. 9 - Predict/Calculate Two trucks drive directly away...Ch. 9 - Prob. 65GPCh. 9 - A 1 35-kg block of wood sits at the edge of a...Ch. 9 - In a stunt, three people jump off a platform and...Ch. 9 - Predict/Calculate The carton of eggs shown in...Ch. 9 - The Force of a Storm During a severe storm in Palm...Ch. 9 - An experiment is performed in which two air carts...Ch. 9 - Figure 9-40 shows position-versus-time data from...Ch. 9 - To balance a 35.5-kg automobile tire and wheel, a...Ch. 9 - A hoop of mass M and radius R rests on a smooth,...Ch. 9 - Predict/Calculate A 63-kg canoeist stands in the...Ch. 9 - Prob. 75GPCh. 9 - A young hockey player stands at rest on the ice...Ch. 9 - Prob. 77GPCh. 9 - A 0.454-kg block is attached to a horizontal...Ch. 9 - BIO Escaping Octopus The giant Pacific octopus...Ch. 9 - Prob. 80GPCh. 9 - The three air carts shown in Figure 9-44 have...Ch. 9 - Unlimited Overhang Four identical textbooks, each...Ch. 9 - Consider a one-dimensional. head-on elastic...Ch. 9 - Two air carts of mass m1 = 0.84 kg and m2 = 0.42...Ch. 9 - Golden Earrings and the Golden Ratio A popular...Ch. 9 - Amplified Rebound Height Two small rubber balls...Ch. 9 - Predict/Calculate Weighing a Block on an Incline A...Ch. 9 - Predict/Calculate A uniform rope of length L and...Ch. 9 - Prob. 89PPCh. 9 - Prob. 90PPCh. 9 - Prob. 91PPCh. 9 - Prob. 92PPCh. 9 - Referring to Example 9-12 Suppose a bullet of mass...Ch. 9 - Referring to Example 9-12 A bullet with a mass m =...Ch. 9 - Referring to Example 9-19 Suppose that cart 1 has...Ch. 9 - Referring to Example 9-19 Suppose the two carts...
Additional Science Textbook Solutions
Find more solutions based on key concepts
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
How does an obligate aerobe differ from a facultative aerobe?
Brock Biology of Microorganisms (15th Edition)
Q1. What is the empirical formula of a compound with the molecular formula
Chemistry: A Molecular Approach (4th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 2.50 kg is pushed d = 2.30 m along a frictionless horizontal table by a constant applied force of magnitude F = 10.0 N directed at an angle 25.0° below the horizontal as shown in the figure below. m (a) Determine the work done by the applied force. ] (b) Determine the work done by the normal force exerted by the table. ] (c) Determine the work done by the force of gravity. ] (d) Determine the work done by the net force on the block. ]arrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.845 m/s encounters a rough horizontal surface of length = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 294 N on the crate. e (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude direction ---Select--- N (b) Find the net work done on the crate while it is on the rough surface. ] (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardTwo blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. × J 37° Barrow_forward
- You are working for the Highway Department. In mountainous regions, highways sometimes include a runaway truck ramp, and you are asked to help with the design of such a ramp. A runaway truck ramp is often a lane of gravel adjacent to a long downhill section of roadway where trucks with failing brakes may need assistance to stop. Working with your supervisor, you develop a worst-case scenario: a truck with a mass of 6.00 × 104 kg enters a runaway truck lane traveling at 34.1 m/s. Assume that the maximum constant value for safe acceleration of the truck is -5.00 m/s². Any higher magnitude of acceleration increases the likelihood that semi-trailer rigs could jackknife. Your supervisor asks you to advise her on the required length (in m) of a runaway truck lane on a flat section of ground next to the roadway. marrow_forwardA large cruise ship of mass 6.20 × 107 kg has a speed of 10.2 m/s at some instant. (a) What is the ship's kinetic energy at this time? ] (b) How much work is required to stop it? (Give the work done on the ship. Include the sign of the value in your answer.) ] (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 3.10 km? Narrow_forwardA 7.80 g bullet is initially moving at 660 m/s just before it penetrates a block of wood to a depth of 6.20 cm. (a) What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of wood? Use work and energy considerations to obtain your answer. N (b) Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of wood and the moment it stops moving? Sarrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardTwo blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. ] 37° A © Barrow_forwardA skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 6.20 m. i (a) Find his speed at the bottom of the half-pipe (point Ⓡ). m/s (b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ? ] (c) How high above point ① does he rise? marrow_forward
- A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical. (a) Neglecting friction, find the child's speed at the lowest position. m/s (b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction? ]arrow_forwardA force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY