![Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)](https://www.bartleby.com/isbn_cover_images/9780321908865/9780321908865_largeCoverImage.gif)
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
3rd Edition
ISBN: 9780321908865
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 51GP
Dan is gliding on his skateboard at 4.0 m/s. He suddenly jumps backward off the skateboard, kicking the skateboard forward at 8.0 m/s. How fast is Dan going as his feet hit the ground? Dan’s mass is 50 kg and the skateboard’s mass is 5.0 kg.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A converging lens with a focal length of 6.70 cm forms an image of a 4.60 mm tall real object that is to the left of the lens. The image is 1.50 cm tall and erect. Where are the object and image located? Is the image real or virtual? Please show all steps
No chatgpt pls will upvote
need help part e
Chapter 9 Solutions
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
Ch. 9 - Rank in order, from largest to smallest, the...Ch. 9 - Starting from rest, object 1 is subject to a 12 N...Ch. 9 - A 0.2 kg plastic cart and a 20 kg lead cart can...Ch. 9 - Two pucks, of mass m and 4m, lie on a frictionless...Ch. 9 - Prob. 5CQCh. 9 - Two students stand at rest, facing each other on...Ch. 9 - A 2 kg cart rolling to the right at 3 m/s runs...Ch. 9 - Automobiles are designed with crumple zones...Ch. 9 - You probably know that it feels better to catch a...Ch. 9 - In the early days of rocketry, some people claimed...
Ch. 9 - Two ice skaters, Megan and Jason, push off from...Ch. 9 - Suppose a rubber ball and a steel ball collide....Ch. 9 - While standing still on a basketball court, you...Ch. 9 - To win a prize at the county fair, youre trying to...Ch. 9 - Rank in order, from largest to smallest, the...Ch. 9 - Monica stands at the edge of a circular platform...Ch. 9 - If the earth warms significantly, the polar ice...Ch. 9 - The disks shown in Figure Qg.181 have equal mass....Ch. 9 - Curling is a sport played with 20 kg stones that...Ch. 9 - Two balls are hung from cords. The first ball, of...Ch. 9 - Figure Q9.21 shows two blocks sliding on a...Ch. 9 - Two friends are sitting in a stationary canoe. At...Ch. 9 - Two blocks, with masses m1, = 2.5 kg and m2 = 14...Ch. 9 - A small puck is sliding to the right with...Ch. 9 - A red ball, initially at rest, is simultaneously...Ch. 9 - A 4.0-m-diameter playground merry-go-round, with a...Ch. 9 - A disk rotates freely on a vertical axis with an...Ch. 9 - At what speed do a bicycle and its rider, with a...Ch. 9 - A 57 g tennis ball is served at 45 m/s. If the...Ch. 9 - A student throws a 120 g snowball at 7.5 m/s at...Ch. 9 - In Figure P9.4, what value of Fmax gives an...Ch. 9 - A sled and rider, gliding over horizontal,...Ch. 9 - Use the impulse-momentum theorem to find how long...Ch. 9 - a. A 2.0 kg object is moving to the right with a...Ch. 9 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 9 - A child is sliding on a sled at 1.5 m/s to the...Ch. 9 - An ice hockey puck slides along the ice at 12 m/s....Ch. 9 - As part of a safety investigation, two 1400 kg...Ch. 9 - In a Little League baseball game, the 145 g ball...Ch. 9 - A small, 100 g cart is moving at 1.20 m/s on a...Ch. 9 - A man standing on very slick ice fires a rifle...Ch. 9 - A 2.7 kg block of wood sits on a frictionless...Ch. 9 - A strong man is compressing a lightweight spring...Ch. 9 - A 10,000 kg railroad car is rolling at 2.00 m/s...Ch. 9 - A 5000 kg t rain car, with its top open, is...Ch. 9 - A 55 kg hunter, standing on frictionless ice,...Ch. 9 - A 9.5 kg dog takes a nap in a canoe and wakes up...Ch. 9 - Prob. 21PCh. 9 - A 71 kg baseball player jumps straight up to catch...Ch. 9 - A kid at the junior high cafeteria wants to propel...Ch. 9 - The parking brake on a 2000 kg Cadillac has...Ch. 9 - A 2.0 kg block slides along a frictionless surface...Ch. 9 - Erica (36 kg) and Danny (47 kg) are bouncing on a...Ch. 9 - At a wild-west show, a marksman fires a bullet at...Ch. 9 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 9 - Two particles collide and bounce apart. Figure...Ch. 9 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 9 - A firecracker in a coconut blows the coconut into...Ch. 9 - What is the angular momentum of the moon around...Ch. 9 - A little girl is going on the merry-go-round for...Ch. 9 - What is the angular momentum about the axle of the...Ch. 9 - What is the angular momentum about the axle of the...Ch. 9 - Divers change their body position in midair while...Ch. 9 - Prob. 37PCh. 9 - What is the impulse on a 3.0 kg particle that...Ch. 9 - A 600 g air-track glider collides with a spring at...Ch. 9 - Far in space, where gravity is negligible, a 425...Ch. 9 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 9 - A 200 g ball is dropped from a height of 2.0 m and...Ch. 9 - Figure P9.43 is a graph of the force exerted by...Ch. 9 - A sled slides along a horizontal surface for which...Ch. 9 - A 140 g baseball is moving horizontally to the...Ch. 9 - Squids rely on jet propulsion, a versatile...Ch. 9 - The flowers of the bunchberry plant open with...Ch. 9 - a. With what speed are pollen grains ejected from...Ch. 9 - A tennis player swings her 1000 g racket with a...Ch. 9 - A 20 g ball of clay is thrown horizontally at 30...Ch. 9 - Dan is gliding on his skateboard at 4.0 m/s. He...Ch. 9 - James and Sarah stand on a stationary cart with...Ch. 9 - Ethan, whose mass is 80 kg, stands at one end of a...Ch. 9 - A small cart rolls freely along the floor. As it...Ch. 9 - Three identical train cars, coupled together, are...Ch. 9 - A 110 kg linebacker running at 2.0 m/s and an 82...Ch. 9 - Most geologists believe that the dinosaurs became...Ch. 9 - Two ice skaters, with masses of 75 kg and 55 kg,...Ch. 9 - Prob. 59GPCh. 9 - One billiard ball is shot east at 2.00 m/s. A...Ch. 9 - A 10 g bullet is fired into a 10 kg wood block...Ch. 9 - A typical raindrop is much more massive than a...Ch. 9 - A 15 g bullet is fired at 610 m/s into a 4.0 kg...Ch. 9 - Two 500 g blocks of wood are 2.0 m apart on a...Ch. 9 - A 495 kg cannon fires a 10.0 kg cannonball with a...Ch. 9 - Laura, whose mass is 35 kg, jumps horizontally off...Ch. 9 - A spaceship of mass 2.0 106 kg is cruising at a...Ch. 9 - At the county fair, Chris throws a 0.15 kg...Ch. 9 - Figure P9.70 shows a collision between three balls...Ch. 9 - The carbon isotope 14C is used for carbon dating...Ch. 9 - A 1.0-m-long massless rod is pivoted at one end...Ch. 9 - A 200 g puck revolves in a circle on a...Ch. 9 - Figure P9.74 shows a 100 g puck revolving at 100...Ch. 9 - A 2.0 kg, 20-cm-diameter turntable rotates at 100...Ch. 9 - Joey, from Example 9.10, stands at rest at the...Ch. 9 - A 3.0-m-diameter merry-go-round with a mass of 250...Ch. 9 - Disk A, with a mass of 2.0 kg and a radius of 40...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What type of culture medium would increase the size of a bacterial capsule?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
MAKE CONNECTIONS In Concept 20.2, you learned about genome-wide association studies. Explain how these studies...
Campbell Biology (11th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Critical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible. Experiment with changing c to find the critical damping constant. Use the same initial conditions as in the last problem. Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.arrow_forwardNASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…arrow_forward12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?arrow_forward
- need help part darrow_forwardA cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following. Assume +x is in the eastward direction. (a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.) magnitude direction For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…arrow_forwardî A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forward
- Three charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forwardFor which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forward
- A map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY