Concept explainers
For each of the following unbalanced chemical equations, suppose that exactly 15.0 g of each reactant are taken. Using Before− Change−After (BCA) tables, determine which reactant is limiting, and calculate what mass of each product is expected. (Assume that the limiting reactant is completely consumed.)
msp;
msp;
msp;
msp;
(a)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is HCl.
Mass of AlCl3 produce =
Mass of H2 produce =
Explanation of Solution
Number of moles of Al =
Number of moles of HCl =
Possibility I: if Al runs out first
Balanced equation
Before
Change
_________________________________________________________________________
After
Possibility II: if HCl runs out first
Balanced equation
Before
Change
_________________________________________________________________________
After
According to BCA tables, Al is not the limiting reactant as to react with all the Al we need
Mass of AlCl3 produce =
Mass of H2 produce =
(b)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is NaOH
Mass of Na2 CO3 produce =
Mass of H2 O produce =
Explanation of Solution
Number of moles of NaOH =
Number of moles of CO2 =
Possibility I: if NaOH runs out first
Balanced equation
Before
Change
______________________________________________________________________________
After
Possibility II: if CO2 runs out first
Balanced equation
Befor
Change
_________________________________________________________________________
After
According to BCA tables, CO2 is not the limiting reactant as to react with all the NaOH, we need
Mass of Na2 CO3 produce =
Mass of H2 O produce =
(c)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is Pb(NO3 )2 Mass of PbCl2 produce =
Mass of HNO3 produce =
Explanation of Solution
Number of moles of Pb(NO3 )2 =
Number of moles of HCl =
Possibility I: if Pb(NO3 )2 runs out first
Balanced equation
Before
Change
______________________________________________________________________________
After
Possibility II: if HCl runs out first
Balanced equation
Before
Change
_________________________________________________________________________
After
According to BCA tables, HCl is not the limiting reactant as, to react with all the HCl, we need
Mass of PbCl2 produce =
Mass of HNO3 produce =
(d)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is I2.
Mass of KI produce =
Explanation of Solution
Number of moles of K =
Number of moles of I2 =
Possibility I: if K runs out first
Balanced equation
Before
Change
______________________________________________________
After
Possibility II: if I2 runs out first
Balanced equation
Before
Change
______________________________________________________
After
According to BCA tables, K is not the limiting reactant as, to react with all the K, we need
Mass of KI produce =
Want to see more full solutions like this?
Chapter 9 Solutions
Student Solutions Manual for Zumdahl/DeCoste's Introductory Chemistry: A Foundation, 9th
- If a high molecular weight linear polyethylene is chlorinated by inducing the substitution of chlorine atoms by hydrogen, if 5% of all hydrogen atoms are replaced, what approximate percentage of chlorine by weight would the product have?arrow_forwardO Macmillan Learning Chemistry: Fundamentals and Principles Davidson presented by Macmillan Learning Poly(ethylene terephthalate), known as PET or industrially as Dacron, is a polyester synthesized through a condensation reaction between two bifunctional monomers. The monomers, ethylene glycol and terepthalic acid, are given. Add bonds and remove atoms as necessary to show the structure of a two repeat unit portion of a longer polymer chain of PET. You may need to zoom out to see the complete structure of all four monomer units. Select Draw / || | C H 0 3 © Templates More ° ° ° || C CC - OH HO OH HOC - C Erase CC OH HO C C 〃 C H₂ Q2Qarrow_forwardc) + H₂Oarrow_forward
- 으 b) + BF. 3 H2Oarrow_forwardQ4: Draw the product of each Lewis acid-bas reaction. Label the electrophile and nucleophile. b) S + AICI 3 + BF 3arrow_forwardQ1 - What type(s) of bonding would be expected for each of the following materials: solid xenon, calcium fluoride (CaF2), bronze, cadmium telluride (CdTe), rubber, and tungsten? Material solid xenon CaF2 bronze CdTe rubber tungsten Type(s) of bonding Q2- If the atomic radius of lead is 0.175 nm, calculate the volume of its unit cell in cubic meters.arrow_forward
- Determine the atomic packing factor of quartz, knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are 0.038 and 0.117 nm.arrow_forwardUse the following data for an unknown gas at 300 K to determine the molecular mass of the gas.arrow_forward2. Provide a complete retrosynthetic analysis and a complete forward synthetic scheme to make the following target molecule from the given starting material. You may use any other reagents necessary. Brarrow_forward
- 146. Use the following data for NH3(g) at 273 K to determine B2p (T) at 273 K. P (bar) 0.10 0.20 0.30 0.40 0.50 0.60 (Z -1)/10-4 1.519 3.038 4.557 6.071 7.583 9.002 0.70 10.551arrow_forward110. Compare the pressures given by (a) the ideal gas law, (b) the van der Waals equation, and (c) the Redlic-Kwong equation for propane at 400 K and p = 10.62 mol dm³. The van der Waals parameters for propane are a = 9.3919 dm6 bar mol-2 and b = 0.090494 dm³ mol−1. The Redlich-Kwong parameters are A = 183.02 dm bar mol-2 and B = 0.062723 dm³ mol-1. The experimental value is 400 bar.arrow_forwardResearch in surface science is carried out using stainless steel ultra-high vacuum chambers with pressures as low as 10-12 torr. How many molecules are there in a 1.00 cm3 volume at this pressure and at a temperature of 300 K? For comparison, calculate the number of molecules in a 1.00 cm3 volume at atmospheric pressure and room temperature. In outer space the pressure is approximately 1.3 x 10-11 Pa and the temperature is approximately 2.7 K (determined using the blackbody radiation of the universe). How many molecules would you expect find in 1.00 cm3 of outer space?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning