Concept explainers
Find the reactions and all bar forces for the truss.

Explanation of Solution
Given information:
EI is constant.
The Young’s modulus E of the beam is
The area of all the bars are
Calculation:
Consider the force in the member AC and the horizontal reaction at support B are the redundant.
Remove the redundant to get the released structure.
Sketch the released structure with external loading as shown in Figure 1.
Refer Figure 1.
Consider the force in the member AC as zero.
Find the value of the angle
Find the support reaction as follows:
Apply Equation of Equilibrium,
Consider support A.
Apply Equation of Equilibrium,
Consider joint C.
Apply Equation of Equilibrium,
Consider joint D,
Apply Equation of Equilibrium,
Sketch the P system for
Sketch the released structure with unit member force in member AC as shown in Figure 3.
Refer Figure 4.
Consider the force in the member AC is 1 kips.
The support reactions at A and B are zero as no external load acts on the truss.
Consider support A.
Apply Equation of Equilibrium,
Consider joint C.
Apply Equation of Equilibrium,
Consider joint D,
Apply Equation of Equilibrium,
Sketch the Q system for
Sketch the Q system for
Refer Figure 5.
Find the support reaction at A as follows:
Applying Equation of Equilibrium,
There is no external load at joint D and C and no vertical reaction at A and B.
The force in all the members of the truss except AB is zero.
Consider joint A.
Applying Equation of Equilibrium,
Find the deflection
Find the deflection
Find the deflection
Find the deflection
Find the deflection
Find the deflection
Show the compatibility Equation for
Show the compatibility Equation for
Solve Equation (1) and (2).
Find the reaction and bar forces in the members of the truss as shown in 6 and 7.
Apply the sum shown in Figure 6 to get the final reactions and member forces shown in Figure 7.
Want to see more full solutions like this?
Chapter 9 Solutions
UCD FUND OF STRUCTURAL ANALYSIS 5E
- Aum AA waste incinerator stack emits 27,027 kg/yr of cadmium and has an effective stack might of 100 m. The wind speed is 5 m/s at an anemometer located at 10 m. It is a clear sunny day with the sun nearly overhead (Class B conditions). a. Calculate the ground-level cadmium concentration (in ug/m³) at a distance of 2 km directly downwind? [Refer to tables in the textbook to help with this problem] What is the concentration of cadmium (in µg/m³) inside of a house at the location in part (a) after two hours? Note that the initial concentration of cadmium in the house was zero, there are 0.25 air changes per hour (ach), there is no source of cadmium inside the house, and cadmium is considered a conservative pollutant.arrow_forwardMust be handwrittenShow your complete solution with proper working equations.Express intermediate answers to at least four (4) decimal places and round final answers to two (2) decimal places. Enclose and summarize your final answers in a boxarrow_forwardFor the frame shown below, determine the vertical displacement at C. Assume that flexural rigidities AB and BC segments are EI and 2EI, respectively. Use the method of virtual work and show all working.arrow_forward
- You are an engineer designing an aeration tank for a wastewater treatment plant receiving municipal waste. The activated sludge system (aeration tank and secondary clarifier) you design needs to remove 85% of the incoming BODs from the primary effluent, giving a final concentration of 30.0 mg BOD5/L exiting the system. Your design will maintain a concentration of 2500 mg VSS/L and F/M ratio of 0.5 g BOD/g VSS d in the aeration tank. In an effort to keep the waste activated sludge low in water, only about 0.1% of the primary effluent flow (Q) exits the WAS line. The secondary effluent has a flow rate of 9990 m³/d. What volume (in m³) will the aeration tank need to be? Write out all equations and state any assumptions as needed. Primary effluent: Aeration tank V, X, S Secondary clarifier Secondary effluent: Q. Xo. So Qe, Xe, S 0 po RAS line: Q, X., S Activated sludge control volume WAS line: Qw, X, Sarrow_forwardAum A waste incinerator stack emits 27,027 kg/yr of cadmium and has an effective stack might of 100 m. The wind speed is 5 m/s at an anemometer located at 10 m. It is a clear sunny day with the sun nearly overhead (Class B conditions). a. Calculate the ground-level cadmium concentration (in ug/m³) at a distance of 2 km directly downwind? [Refer to tables in the textbook to help with this problem] What is the concentration of cadmium (in µg/m³) inside of a house at the location in part (a) after two hours? Note that the initial concentration of cadmium in the house was zero, there are 0.25 air changes per hour (ach), there is no source of cadmium inside the house, and cadmium is considered a conservative pollutant.arrow_forward6. A simply supported beam is subjected to uniformly distributed loads: a service dead load WD = 5 kips/ft and a service live load w₁ =7 kips/ft. Use the load combination w₁ = 1.2WD + 1.6WL. Note that the shear force is expressed as V₂ = w₁ (-/-- x) where x is the distance from a support. (65pts total) The beam also has the following properties. f = 4ksi, fy = fyt = 60 ksi, b = 18 in, h = 26 in, d = 24.5 in, 20ft No. 4 bars, U-stirrups used, Normalweight concrete (1) Calculate the required spacing of stirrups. (15pts) (2) Calculate the maximum spacing. Also, determine the location along the beam where the maximum spacing can be applied (i.e., the distance from support). (10pts) (3) Show the stirrup designs along with the shear force diagram. Indicate the numbers and spacings of stirrups. A transition between the required spacing and the maximum spacing is unnecessary. (15pts) (4) Assume the live load decreases, and, as a result, the factored shear force is 30 kips. Discuss whether…arrow_forward
- 5. A singly reinforced beam has a width b = 16 in., a height h = 20 in., and an effective depth d = 18.5 in. The beam is reinforced with six No. 8 bars. The beam is subjected to a positive bending moment, causing the bottom of the beam to experience tension. (65pts total) The material properties are as follows: f = 5 ksi, fy = 60 ksi d 888 Six no. 8 bars (1) Find the bending moment [kips-in] that can cause tension cracks. Use the following parameters regarding the equivalent transformed section. Do not consider load and resistance factors. (15pts) - Neutral axis: 10.7 in. from the top face of beam - Moment of inertia: 12,550 in² around the neutral axis - Modulus of rupture: fƒ„ = 7.5√ƒ! [psi] (i.e., the concrete tensile stress for crack initiation) (2) Find the service moment strength [kips-in]. The allowable stress of concrete and steel is 0.45f, and 0.5fy, respectively. Do not consider load and resistance factors. (15pts) (3) Calculate the nominal moment strength M, and the design…arrow_forwardQ2) Determine the bar forces and reactions of the truss. ABD= 4 in², A= 2 in² and E=30000 kips/in². A D 20 ft 60 kips 15 ft Barrow_forwardL h Water Fig. P4 Hinge Farrow_forward
- Someone wants to study environmental engineering in a European country for 8 years and wants to deposit an amount of money in one of the approved banks for the purpose of paying his annual study expenses, where it is planned that he will withdraw $2000 annually after one year from the date of deposit for a period of five consecutive years, and then withdraw $3000 annually for the remaining period of his studies. Calculate the amount required to be deposited for the purpose of covering the study expenses if you know that the interest rate is 8.5%arrow_forwardDesign a typical girder for the floor system shown in the figure below. In addition to the weight of the beam, the dead load consists of a 5-inch-thick reinforced concrete slab (normal-weight concrete). The live load is 85 psf, and there is a 20-psf partition load. Do not check deflections. Assume that the girder is supporting beams on each side, and assume that the beams weigh 35 lb / ft. Let all the loads on the girder act as a uniform load (be sure to include the weight of the beams). 30' A -4 @ 5' = 20' Use the table below. - Mn (ft-kips) Mn/ (ft-kips) | Vn (kips) Vn/v (kips) Shape W21 × 48 398 265 216 144 W12 × 58 324 216 132 87.8 W16 × 45 309 205 167 111 W18 × 40 294 196 169 113 a. Use LRFD. Calculate the required moment strength and the maximum shear. (Express your answers to three significant figures.) Mu - Vu Select a shape: -Select- b. Use ASD. ft-kips kips Calculate the required moment strength and the maximum shear. (Express your answers to three significant figures.) Ma =…arrow_forwardWater in a tank is used to control the water pressure in a pipe as shown in Figure P5 below. Find the pressure in the pipe at A if h = 200 mm and the mercury is at the elevation shown (between points B and C). Assume standard atmospheric pressure and neglect the diameter of the pipe. Express your answer in kPa.arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





