A 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m × 2.00 m × 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and raft. (b) Write Newton’s second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and w r for the weight of the raft. (Set a = 0.) (c) Calculate the numeric value for the buoyancy, B . (Seawater has density 1 025 kg/m 3 .) (d) Using the value of B and the weight w of the survivor, calculate the weight w , of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant, force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?
A 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m × 2.00 m × 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and raft. (b) Write Newton’s second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and w r for the weight of the raft. (Set a = 0.) (c) Calculate the numeric value for the buoyancy, B . (Seawater has density 1 025 kg/m 3 .) (d) Using the value of B and the weight w of the survivor, calculate the weight w , of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant, force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?
A 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m × 2.00 m × 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and raft. (b) Write Newton’s second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0.) (c) Calculate the numeric value for the buoyancy, B. (Seawater has density 1 025 kg/m3.) (d) Using the value of B and the weight w of the survivor, calculate the weight w, of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant, force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.