Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 2P
Figure 9-35 shows a three-particle system, with masses m1 = 3.0 kg, m2 = 4.0 kg, and m3 = 8.0 kg. The scales on the axes are set by xs = 2.0 m and ys = 2.0 m. What are (a) the x coordinate and (b) the y coordinate of the system’s center of mass? (c) If m3 is gradually increased, does the center of mass of the system shift toward or away from that particle, or does it remain stationary?
Figure 9-35 Problem 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.76 kg particle has the xy coordinates (-1.41 m, 0.619 m), and a 5.63 kg particle has the xy coordinates (0.206 m, -0.607 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates (-0.848 m, -0.276 m)?
A system of three particles with masses m1 = 3.0 kg, m2 = 4.0 kg and m3 = 8.0 kg is
placed on a two dimensional xy plane. The scales on the axes are set by x, = 2.0 m
and y, = 2.0 m.
y (m)
mg
m1
* (m)
Figure 2
(a) Find out the x coordinate of the system's center of mass.
(b) Find out the y coordinate of the system's center of mass.
(c) Find out the acceleration of the system if an external force of 5 N acts on it.
A 3.28 kg particle has the xy coordinates (-1.46 m, 0.885 m), and a 2.47 kg particle has the xy coordinates (0.415 m, -0.347 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 4.79 kg particle such that the center of mass of
the three-particle system has the coordinates (-0.689 m, -0.872 m)?
(a) Number
Units
(b) Number
Units
Chapter 9 Solutions
Fundamentals of Physics Extended
Ch. 9 - Figure 9-23 shows an overhead view of three...Ch. 9 - Figure 9-24 shows an overhead view of four...Ch. 9 - Consider a box that explodes into two pieces while...Ch. 9 - Figure 9-26 shows graphs of force magnitude versus...Ch. 9 - The free-body diagrams in Fig. 9-27 give, from...Ch. 9 - Figure 9-28 shows four groups of three or four...Ch. 9 - A block slides along a frictionless floor and into...Ch. 9 - Figure 9-30 shows a snapshot of block 1 as it...Ch. 9 - Two bodies have undergone an elastic...Ch. 9 - Figure 9-32: A block on a horizontal floor is...
Ch. 9 - Block 1 with mass m1 slides along an x axis across...Ch. 9 - Figure 9-34 shows four graphs of position versus...Ch. 9 - A 2.00 kg particle has the xy coordinates 1.20 m,...Ch. 9 - Figure 9-35 shows a three-particle system, with...Ch. 9 - Figure 9-36 shows a slab with dimensions d1 = 11.0...Ch. 9 - In Fig. 9-37, three uniform thin rods, each of...Ch. 9 - GO What are a the x coordinate and b the y...Ch. 9 - Figure 9-39 shows a cubical box that has been...Ch. 9 - ILW In the ammonia NH3 molecule of Fig. 9-40,...Ch. 9 - GO A uniform soda can of mass 0.140 kg is 12.0 cm...Ch. 9 - ILW A stone is dropped at t = 0. A second stone,...Ch. 9 - GO A 1000 kg automobile is at rest at a traffic...Ch. 9 - A big olive m = 0.50 kg lies at the origin of an...Ch. 9 - Prob. 12PCh. 9 - SSM A shell is shot with an initial velocity v0 of...Ch. 9 - In Figure 9-43, two particles are launched from...Ch. 9 - Figure 9-44 shows an arrangement with an air...Ch. 9 - GO Ricardo, of mass 80 kg, and Carmelita, who is...Ch. 9 - GO In Fig. 9-45a, a 4.5 kg dog stands on an 18 kg...Ch. 9 - A 0.70 kg ball moving horizontally at 5.0 m/s...Ch. 9 - ILW A 2100 kg truck traveling north at 41 km/h...Ch. 9 - GO At time t = 0, a ball is struck at ground level...Ch. 9 - A 0.30 kg softball has a velocity of 15 m/s at an...Ch. 9 - Figure 9-47 gives an overhead view of the path...Ch. 9 - Until his seventies, Henri LaMothe Fig. 9-48...Ch. 9 - In February 1955, a paratrooper fell 370 m from an...Ch. 9 - A 1.2 kg ball drops vertically onto a floor,...Ch. 9 - In a common but dangerous prank, a chair is pulled...Ch. 9 - SSM A force in the negative direction of an x axis...Ch. 9 - In tae-kwon-do, a hand is slammed down onto a...Ch. 9 - Suppose a gangster sprays Supermans chest with 3 g...Ch. 9 - Two average forces. A steady stream of 0.250 kg...Ch. 9 - Jumping up before the elevator hits. After the...Ch. 9 - A 5.0 kg toy car can move along an x axis; Fig....Ch. 9 - GO Figure 9-51 shows a 0.300 kg baseball just...Ch. 9 - Basilisk lizards can run across the top of a water...Ch. 9 - GO Figure 9-53 shows an approximate plot of force...Ch. 9 - A 0.25 kg puck is initially stationary on an ice...Ch. 9 - SSM A soccer player kicks a soccer ball of mass...Ch. 9 - In the overhead view of Fig. 9-54, a 300 g ball...Ch. 9 - SSM A 91 kg man lying on a surface of negligible...Ch. 9 - A space vehicle is traveling at 4300 km/h relative...Ch. 9 - Figure 9-55 shows a two-ended rocket that is...Ch. 9 - An object, with mass m and speed v relative to an...Ch. 9 - In the Olympiad of 708 B.C., some athletes...Ch. 9 - Prob. 44PCh. 9 - SSM WWW A 20.0 kg body is moving through space in...Ch. 9 - A 4.0 kg mess kit sliding on a frictionless...Ch. 9 - A vessel at rest at the origin of an xy coordinate...Ch. 9 - GO Particle A and particle B are held together...Ch. 9 - A bullet of mass 10 g strikes a ballistic pendulum...Ch. 9 - A 5.20 g bullet moving at 672 m/s strikes a 700 g...Ch. 9 - GO In Fig. 9-58, a 3.50 g bullet is fired...Ch. 9 - GO In Fig. 9-59, a 10 g bullet moving directly...Ch. 9 - Prob. 53PCh. 9 - A completely inelastic collision occurs between...Ch. 9 - ILW A 5.0 kg block with a speed of 3.0 m/s...Ch. 9 - In the before part of Fig. 9-60, car A mass 1100...Ch. 9 - Prob. 57PCh. 9 - In Fig. 9-62, block 2 mass 1.0 kg is at rest on a...Ch. 9 - ILW In Fig. 9-63, block 1 mass 2.0 kg is moving...Ch. 9 - Module 9-7 Elastic Collisions in One Dimension In...Ch. 9 - SSM A cart with mass 340 g moving on a...Ch. 9 - Two titanium spheres approach each other head-on...Ch. 9 - Block 1 of mass m1 slides along a frictionless...Ch. 9 - GO A steel ball of mass 0.500 kg is fastened to a...Ch. 9 - SSM A body of mass 2.0 kg makes an elastic...Ch. 9 - Block 1, with mass m1 and speed 4.0 m/s, slides...Ch. 9 - In Fig. 9-66, particle 1 of mass m1 = 0.30 kg...Ch. 9 - GO In Fig. 9-67, block 1 of mass m1 slides from...Ch. 9 - GO A small ball of mass m is aligned above a...Ch. 9 - GO In Fig. 9-69, puck 1 of mass m1 = 0.20 kg is...Ch. 9 - ILW In Fig. 9-21, projectile particle 1 is an...Ch. 9 - Ball B, moving in the positive direction of an x...Ch. 9 - After a completely inelastic collision, two...Ch. 9 - Two 2.0 kg bodies, A and B, collide. The...Ch. 9 - GO A projectile proton with a speed of 500 m/s...Ch. 9 - A 6090 kg space probe moving nose-first toward...Ch. 9 - SSM In Fig. 9-70, two long barges are moving in...Ch. 9 - Prob. 78PCh. 9 - SSM ILW A rocket that is in deep space and...Ch. 9 - An object is tracked by a radar station and...Ch. 9 - The last stage of a rocket, which is traveling at...Ch. 9 - Pancake collapse of a tall building. In the...Ch. 9 - Prob. 83PCh. 9 - Figure 9-73 shows an overhead view of two...Ch. 9 - Speed deamplifier. In Fig. 9-74, block 1 of mass...Ch. 9 - Speed amplifier. In Fig. 9-75, block 1 of mass m1...Ch. 9 - A ball having a mass of 150 g strikes a wall with...Ch. 9 - A spacecraft is separated into two parts by...Ch. 9 - SSM A 1400 kg car moving at 5.3 m/s is initially...Ch. 9 - ILW A certain radioactive parent nucleus...Ch. 9 - A 75 kg man rides on a 39 kg cart moving at a...Ch. 9 - Two blocks of masses 1.0 kg and 3.0 kg are...Ch. 9 - Prob. 93PCh. 9 - An old Chrysler with mass 2400 kg is moving along...Ch. 9 - SSM In the arrangement of Fig. 9-21, billiard ball...Ch. 9 - A rocket is moving away from the solar system at a...Ch. 9 - The three balls in the overhead view of Fig. 9-76...Ch. 9 - A 0.15 kg ball hits a wall with a velocity of 5.00...Ch. 9 - Prob. 99PCh. 9 - In a game of pool, the cue ball strikes another...Ch. 9 - Prob. 101PCh. 9 - In Fig. 9-79, an 80 kg man is on a ladder hanging...Ch. 9 - In Fig. 9 80, block 1 of mass m1 = 6.6 kg is at...Ch. 9 - Prob. 104PCh. 9 - SSM A 3.0 kg object moving at 8.0 m/s in the...Ch. 9 - A 2140 kg railroad flatcar, which can move with...Ch. 9 - SSM A 6100 kg rocket is set for vertical firing...Ch. 9 - A 500.0 kg module is attached to a 400.0 kg...Ch. 9 - SSM a How far is the center of mass of the...Ch. 9 - A 140 g ball with speed 7.8 m/s strikes a wall...Ch. 9 - SSM A rocket sled with a mass of 2900 kg moves at...Ch. 9 - SSM A pellet gun fires ten 2.0 g pellets per...Ch. 9 - A railroad car moves under a grain elevator at a...Ch. 9 - Figure 9-82 shows a uniform square plate of edge...Ch. 9 - SSM At time t = 0, force F1=(4.00i+5.00j) N acts...Ch. 9 - Two particles P and Q are released from rest 1.0 m...Ch. 9 - A collision occurs between a 2.00 kg particle...Ch. 9 - In the two-sphere arrangement of Fig. 9-20, assume...Ch. 9 - In Fig. 9-83, block 1 slides along an x axis on a...Ch. 9 - A body is traveling at 2.0 m/s along the positive...Ch. 9 - An electron undergoes a one-dimensional elastic...Ch. 9 - Prob. 122PCh. 9 - An unmanned space probe of mass m and speed v...Ch. 9 - A 0.550 kg ball falls directly down onto concrete,...Ch. 9 - An atomic nucleus at rest at the origin of an xy...Ch. 9 - Particle 1 of mass 200 g and speed 3.00 m/s...Ch. 9 - During a lunar mission, it is necessary to...Ch. 9 - A cue stick strikes a stationary pool ball, with...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. How many cervical, thoracic, lumbar, sacral, and coccygeal vertebrae are normally present in the vertebral ...
Human Anatomy & Physiology (2nd Edition)
11. The drag force on an object moving in a liquid is quite different from that in air. Drag forces in air are ...
College Physics: A Strategic Approach (3rd Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
At what depth shallow, Intermediate, or deep do the earthquakes In the middle of the Atlantic Ocean occur? Eart...
Applications and Investigations in Earth Science (9th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two particles of masses m1 and m2 , move uniformly in different circles of radii R1 and R2 R2 about origin in the x, y-plane. The x- and y-coordinates of the center of mass and that of particle 1 are given as follows (where length is in meters and tin seconds): x1(t)=4cos(2t) , y1(t)=4sin(2t) and: xCM(t)=4cos(2t) , yCM(t)=3sin(2t) . a. Find the radius of the circle in which particle 1 moves. b. Find the x- and y-coordinates of particle 2 and the radius of the circle this particle moves.arrow_forwardA uniform piece of sheet metal is shaped as shown in Figure P9.24. Compute the x and y coordinates of the center of mass of the piece. Figure P9.24arrow_forwardA space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forward
- A system consists of two particles with masses m1 = 2 kg and m2 = 3 kg. Particle 1 is located at coordinates (2 m, 3 m) and particle 2 is located at coordinates (5 m, -1 m). Determine the coordinates of the center of mass of the system.arrow_forwardThe figure shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length L = 76 cm. Find (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the center of mass of the box. (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardA 4.30 kg particle has the xy coordinates (-1.39 m, 0.366 m), and a 2.68 kg particle has the xy coordinates (0.733 m, -0.487 m). Both Ilie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 4.88 kg particle such that the center of mass of the three- particle system has the coordinates (-0.680 m, -0.256 m)? (a) Number i Units (b) Number Unitsarrow_forward
- The figure shows a three-particle system, with masses m₁ = 2.5 kg, m2 = 3.9 kg, and m3 = 6.2 kg. What are (a) the x coordinate and (b) the y coordinate of the system's center of mass? y (m) 2 = " 0 mg 1 for 2 mq 3 x (m) (a) Number 1.2936507 Units m (b) Number i 1.1 Units m >arrow_forwardA 2.50 kg particle has the xy coordinates (-1.20 m, 0.500 m) and a 5.50 kg particle has the xy coordinates (0.600 m, -0.750 m). Both lie on a horizontal plane. At what x and y coordinates must you place a 2.50 kg particle such that the center of mass of the three-particle system has the coordinates (-0.500 m, -0.700 m)? (a) x coordinate (b) y coordinatearrow_forwardConsider two objects. Object 1 has a mass of 7 kg and is placed at the origin. Object 2 has a mass of 24 kg and is at the location x= 4 m and y = 0 m. What is x coordinate of %3D the center of mass of this system in meters?arrow_forward
- Four objects are situated along the y axis as follows: a 2.00-kg object is at +3.00 m, a 3.00-kg object is at +2.50 m, a 2.50-kg object is at the origin, and a 4.00-kg object is at −0.500 m. Where is the center of mass of these objects?arrow_forwardThe Center of Mass of Three Particles system consists of three particles located as shown in the figure. Find the center of mass of the system. The masses are m, = m, = 1.0 kg and m, = 2.0 kg. Two 1.0 kg particles are located on the x-axis, and a single 2.0 kg particle is located on the y-axis as shown. The vector indicates the location of the system's center of mass. у (m) x (m) 3. 1 SOLUTION Conceptualize The figure shows the three masses. Your intuition should tell you that the center of mass is located somewhere in the region between the blue particle and the pair of tan particles as shown in the figure. problem because we will be using the equations for the center of mass Categorize We categorize this example as --Select--- developed in this section. (For the next three answers, use the following as necessary: m,, m2, m3, Y1, Y2, Y3, X1, X2, and x3. Do not substitute numerical values; use variables only.) Use the defining equations for the coordinates of the center of mass and…arrow_forwardProblem 3: A particle with mass ma = 3.00 kg is located at ra = (2.50 i + 3.50 j) m, and a second particle of mass m2B = 5.00 kg is located at rB = (1.50 i - 3.00 j) m. Find the location of the center of mass of the system relative to the point (1,1).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY