Concept explainers
Solid calcium carbide
l type='a'>
(a)
Interpretation:
The balanced chemical reaction for the solid calcium carbide with liquid water should be determined.
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
For example, the reaction between lead sulphide and oxygen is as follows:
Mass of any substance can be calculated as follows:
Number of moles can be calculated as follows;
Answer to Problem 20CR
The balance equation for the solid calcium carbide with liquid water is as follows:
Explanation of Solution
The limiting reactant in a particular reaction has due to following properties:
- Limiting reactant completely reacted in a particular reaction.
- Limiting reactant determines the amount of the product in mole.
If any reactant left after competitions of reaction, thus it is said to excess reactant.
The balance equation for the solid calcium carbide with liquid water is as follows:
(b)
Interpretation:
The limiting reagent should be determined.
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
For example, the reaction between lead sulphide and oxygen is as follows:
Mass of any substance can be calculated as follows:
Number of moles can be calculated as follows;
Answer to Problem 20CR
Explanation of Solution
The limiting reactant in a particular reaction has due to following properties:
- Limiting reactant completely reacted in a particular reaction.
- Limiting reactant determines the amount of the product in mole.
If any reactant left after competitions of reaction, thus it is said to excess reactant.
The balance equation for the solid calcium carbide with liquid water is as follows:
Given:
Amount of
Amount of
Calculation:
Number of moles of
Amount of other reactant is calculated as follows:
Here, water is a limiting agent and calcium carbide present in excess.
(c)
Interpretation:
To prove that mass in conserved for reactant
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
For example, the reaction between lead sulphide and oxygen is as follows:
Mass of any substance can be calculated as follows:
Number of moles can be calculated as follows;
Answer to Problem 20CR
Both sides amount approximately equal thus that mass in conserved for reactant.
Explanation of Solution
The limiting reactant in a particular reaction has due to following properties:
- Limiting reactant completely reacted in a particular reaction.
- Limiting reactant determines the amount of the product in mole.
If any reactant left after competitions of reaction, thus it is said to excess reactant.
The balance equation for the solid calcium carbide with liquid water is as follows:
Given:
Amount of
Amount of
Calculation:
Number of moles of
Amount of other reactant which left after reaction is calculated as follows:
Amount of product in gram calculated as follows:
Now;
Amount of reaming reactant + total product amount = amount of used reactants
Both sides amount approximately equal thus that mass in conserved for reactant.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK INTRO.CHEMISTRY (NASTA EDITION)
- Part V. Draw the structure of compound tecla using the IR spectrum Cobtained from the compound in KBr pellet) and the mass spectrum as shown below. The mass spectrum of compound Tesla showed strong mt peak at 71. TRANSMITTANCE LOD Relative Intensity 100 MS-NW-1539 40 20 80 T 44 55 10 15 20 25 30 35 40 45 50 55 60 65 70 75 m/z D 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardTechnetium is the first element in the periodic chart that does not have any stable isotopes. Technetium-99m is an especially interesting and valuable isotope as it emits a gamma ray with a half life ideally suited for medical tests. It would seem that the decay of technetium should fit the treatment above with the result In(c/c) = -kt. The table below includes data from the two sites: http://dailymed.nlm.nih.gov/dailymed/druginfo.cfm?id=7130 http://wiki.medpedia.com/Clinical: Neutrospec_(Technetium_(99m Tc)_fanolesomab). a. b. C. Graph the fraction (c/c.) on the vertical axis versus the time on the horizontal axis. Also graph In(c/c.) on the vertical axis versus time on the horizontal axis. When half of the original amount of starting material has hours fraction remaining disappeared, c/c = ½ and the equation In(c/c.) = -kt becomes In(0.5) = -kt1/2 where t₁₂ is the half life (the time for half of the material to decay away). Determine the slope of your In(c/c.) vs t graph and…arrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- 1. a) Assuming that an atom of arsenic has hydrogen-like atomic orbitals, sketch the radial probability plots for 4p and 4d orbitals of S atom. Indicate angular and radial nodes in these orbitals. (4 points) b) Calculate Zeff experienced by and electron in 4p AO's in a arsenic atom. Use Slater rules that were discussed in lecture. (3 points)arrow_forwardNonearrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Describe the structural differences between iso- and heteropolyacids.arrow_forwardWhat is the pH of the Tris buffer after the addition of 10 mL of 0.01M NaOH? How would I calculate this?arrow_forwardWhy do isopolianions form polymeric species with a defined molecular weight? What does it depend on?arrow_forward
- What are isopolianions? Describe the structural unit of isopolianions.arrow_forwardJustify the polymerization of vanadates VO43-, as a function of concentration and pH.arrow_forwardWhat is the preparation of 500 mL of 100mM MOPS buffer (pH=7.5) starting with 1 M MOPS and 1 M NaOH? How would I calculate the math?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning