Find the maximum negative bending moment at point B.
Answer to Problem 1P
The maximum negative bending moment at point B is
Explanation of Solution
Given Information:
The concentrated live load (P) is 75 kN.
Calculation:
Apply a 1 kN unit moving load at a distance of x from left end A.
Sketch the free body diagram of beam as shown in Figure 1.
Refer Figure 1.
Find the equation of support reaction
Take moment about point A.
Consider moment equilibrium at point A.
Consider clockwise moment as positive and anticlockwise moment as negative.
Sum of moment at point A is zero.
Find the equation of support reaction
Apply vertical equilibrium equation of forces.
Consider upward force as positive
Substitute
Find the equation of moment at B.
Apply 1 kN at just left of B
Sketch the free body diagram of the section AB as shown in Figure 2.
Refer Figure 2.
Consider moment at B.
Consider clockwise moment as positive and anticlockwise moment as negative.
Substitute
Apply 1 kN at just right of B
Sketch the free body diagram of the section BD as shown in Figure 3.
Refer Figure 3.
Consider moment at B.
Consider clockwise moment as positive and anticlockwise moment as negative.
Find the equation of moment at B of portion BC
Substitute
Thus, the equations of the influence line for
Find the value of influence line ordinate of moment at various points of x using the Equations (3) and (4) and summarize the value as in Table 1.
x | |
0 | 0 |
7 | |
14 | 0 |
28 | –2 |
Draw the influence lines for the moment at point B using Table 4 as shown in Figure 4.
Refer Figure 4,
The maximum negative influence line ordinate of bending moment at B is
Find the maximum negative bending moment at point B using the equation.
Substitute 75 kN for P and
Therefore, the maximum negative bending moment at point B is
Want to see more full solutions like this?
Chapter 9 Solutions
Structural Analysis, Si Edition
- Need help, please show all work, steps, units and round to 3 significant figures. Thank you!!arrow_forwardNeed help. Find the answer to the boxes marked in red. Thanks!arrow_forwardFor the gravity dam shown in the figure, The following data are available: -Unit weight of concrete (Yconc) = 2.4 ton/m³ -Vertical upward earth quake factor (K,) = 0.1 -Neglect Wave pressure, silt pressure and ice force μ=0.65 a-Find heel and toe stresses (Pmin & Pmax) b-Is this structure safe against tension? c-Find the factor of safety against sliding and overturning (F.S, & F.Sover) 165 m 160 m t 10 m T I 4 m 50 100 marrow_forward
- For the gravity dam shown in the figure, The following data are available: -Unit weight of concrete (Yeone) 2.4 ton/m³ Vertical down ward earth quake factor (K,) = 0.1 Neglect Wave pressure, silt pressure and ice force The wind velocity (V)-45 Km/hr Straight length of water expanse (F) 75 Km =0.7 14-70m 3h T a- Find the factor of safety against sliding and overturning (F.Slid F.Sover) b- Find the toe and heel stresses (hma, and hmin.) c-Check tension. 8marrow_forwardQUESTION 2-(40 Points) In the case where other information is given in the figure, the wall is under the effect of a uniform lateral wind load of 0.7 kN/m2. Since the foundation is sized according to the safe bearing capacity of the soil and the safe bearing capacity remains the same, find the width of this foundation asymmetrically (with uniform base pressure). Draw the vertical section of the wall of the asymmetric foundation and write its dimensions and values on it. Draw the T and M diagrams along the width. The foundation thickness is the same in both cases. q=0.7 kN/m2 5 m R Duvar Nd=Wd 0.7 m T K 0 0.6 0.5 1.7 m Yb-24 kN/m3 0.6 m T + foundationarrow_forwardCan you pls. Explain on how to get "BETA T" and "BETA C" on this study about VALUE OF TRAVEL TIME.arrow_forward
- 440 CHAPTER 9 ANALYSIS OF STATICALLY INDETERMIN 9-23. Determine the reactions at the supports, then draw the moment diagrams for each member. Assume A and B are pins and the joint at C is fixed connected. EI is constant. Se 9-2 12 kN 2 m 2 m 6 kN/m A 6 m Prob. 9-23 Barrow_forwardI need a solution to this problemarrow_forwardThree forces act on the ring. If the resultant force FR has a magnitude and direction as shown, determine the magnitude and the coordinate direction angles of force F3. == F2 = 110 N F3 F₁ = 80 N 3 X 45° FR = 120 N 30° yarrow_forward
- FIND the CENTROID and the MOMENT OF INERTIA through the centroidal x axisarrow_forward(b) For the cantilever beam shown in Fig. 3, a roller support has been added at mid-span. Given that El is constant, use the force method to determine the following: (i) The reaction force at support C. (ii) The reaction forces at fixed support A. (15 marks) C 25 kN B 2 m 2 m Fig. 3: A propped cantilever beam [Q2=25 marks]arrow_forwardYou are working on a 1-km highway extension project that requires the construction of a 4-m tall soil embankment with a top width of 15-m and 2H:1V slopes. A borrow-pit (i.e., a place where soils are excavated, to then be placed elsewhere for construction projects) has been identified with e = 0.74, emax = 0.9, emin = 0.5. To avoid excessive road deformations, the soil will be compacted to a relative density of DR = 90% when placed in the embankment. Your boss estimates that extracting 100,000 m^3 of material from the borrow-pit should be enough for this project. Is your boss correct, or is more material than that needed? To decide, answer these questions: a) What volume of soil, as placed, is required to build the embankment? [Tip: draw the embankment] b) What is the void ratio of the material when placed in the embankment? c) What is the relative density of the material in the borrow-pit? d) When soil is extracted from the borrow-pit and then compacted it the embankment, how do…arrow_forward