
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
13th Edition
ISBN: 9780134875460
Author: Glenn Brookshear, Dennis Brylow
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 1CRP
Program Plan Intro
The collection of multidimensional information about data which is in organized manner and the information about data access easily according to their user’s needs is called database. Its internal links between its entries make the information about data accessible from a variety of perspective to the users.
Flat file:
The collection of one-dimensional information about data and it is accessible from a single point of view to the user is called flat files. It is in contrast to a traditional file storage system.
Expert Solution & Answer

Explanation of Solution
Difference between database and flat files is shown below:
Database | Flat files |
The database is multidimensional storage system. | The flat-files are one-dimensional storage system. |
There is a variety of perspective so the information is accessible from all these perspective in an organized manner. | In flat-files, the information of data is accessible from a single point of view because it is one-dimensional database storage system. |
There are specified multiple tables and the relationship between those tables is allowed by database. | A single table at a time to specify data attributes is allowed by flat files to users. |
The examples of database are db2 and oracle software. | The examples of flat files are db3 and paradox. |
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Which statement regarding SGA_MAX_SIZE is true?
SGA_MAX_SIZE is modifiable after an instance is started, only when Automatic Memory Management is used.
SGA_MAX_SIZE is not dyamically modifiable.
SGA_MAX_SIZE is ignored when MEMORY_TARGET > 0.
SGA-MAX_SIZE must be specified when SGA_TARGET > 0
Explian this C program
#include <stdio.h>
unsigned int rotateRight(unsigned int num, unsigned int bits) {
unsignedint bit_count =sizeof(unsignedint) *8;
bits = bits % bit_count; // Handle cases where bits >= bit_count
return (num >> bits) | (num << (bit_count - bits));
}
int main() {
unsignedint num, bits;
printf("Enter a number: ");
scanf("%u", &num);
printf("Enter the number of bits to shift: ");
scanf("%u", &bits);
printf("After rotation: %u\n", rotateRight(num, bits));
return0;
}
Explian thiS C program
#include<stdio.h>
int countSetBits(int n) { int count = 0; while (n) { count += n & 1; n >>= 1; } return count;}
int main() { int num; printf("Enter a number: "); scanf("%d", &num); printf("Output: %d units\n", countSetBits(num)); return 0;}
Chapter 9 Solutions
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Ch. 9.1 - Identify two departments in a manufacturing plant...Ch. 9.1 - Prob. 2QECh. 9.1 - Summarize the roles of the application software...Ch. 9.2 - Prob. 1QECh. 9.2 - Prob. 2QECh. 9.2 - Prob. 4QECh. 9.2 - Prob. 5QECh. 9.2 - Prob. 6QECh. 9.3 - Prob. 1QECh. 9.3 - What is a persistent object?
Ch. 9.3 - Identify some classes as well as some of their...Ch. 9.3 - Prob. 4QECh. 9.4 - Prob. 1QECh. 9.4 - Prob. 2QECh. 9.4 - Prob. 3QECh. 9.4 - Prob. 4QECh. 9.4 - Prob. 5QECh. 9.4 - Prob. 6QECh. 9.5 - Prob. 1QECh. 9.5 - Prob. 2QECh. 9.5 - Prob. 3QECh. 9.5 - Prob. 4QECh. 9.5 - Prob. 5QECh. 9.5 - Prob. 6QECh. 9.5 - Prob. 7QECh. 9.6 - Prob. 1QECh. 9.6 - Give an additional example of a pattern that might...Ch. 9.6 - Prob. 3QECh. 9.6 - How does data mining differ from traditional...Ch. 9.7 - Prob. 1QECh. 9.7 - Prob. 2QECh. 9.7 - Prob. 3QECh. 9.7 - Prob. 4QECh. 9 - Prob. 1CRPCh. 9 - Prob. 2CRPCh. 9 - Prob. 3CRPCh. 9 - Prob. 4CRPCh. 9 - Prob. 5CRPCh. 9 - Prob. 6CRPCh. 9 - Prob. 7CRPCh. 9 - Prob. 8CRPCh. 9 - Prob. 9CRPCh. 9 - Prob. 10CRPCh. 9 - Prob. 11CRPCh. 9 - Prob. 12CRPCh. 9 - Using the commands SELECT, PROJECT, and JOIN,...Ch. 9 - Answer Problem 13 using SQL. PROBLEM 13 13. Using...Ch. 9 - Prob. 15CRPCh. 9 - Prob. 16CRPCh. 9 - Prob. 17CRPCh. 9 - Prob. 18CRPCh. 9 - Prob. 19CRPCh. 9 - Empl Id Name Address SSN Job Id Job Title Skill...Ch. 9 - Empl Id Name Address SSN Job Id Job Title Skill...Ch. 9 - Prob. 22CRPCh. 9 - Prob. 23CRPCh. 9 - Prob. 24CRPCh. 9 - Prob. 25CRPCh. 9 - Write a sequence of instructions (using the...Ch. 9 - Prob. 27CRPCh. 9 - Prob. 28CRPCh. 9 - Prob. 29CRPCh. 9 - Prob. 30CRPCh. 9 - Prob. 31CRPCh. 9 - Prob. 32CRPCh. 9 - Prob. 33CRPCh. 9 - Prob. 34CRPCh. 9 - Prob. 35CRPCh. 9 - Prob. 36CRPCh. 9 - Prob. 37CRPCh. 9 - Prob. 38CRPCh. 9 - Prob. 39CRPCh. 9 - Prob. 40CRPCh. 9 - Prob. 41CRPCh. 9 - Prob. 42CRPCh. 9 - Prob. 43CRPCh. 9 - Prob. 44CRPCh. 9 - Prob. 45CRPCh. 9 - Prob. 46CRPCh. 9 - Prob. 47CRPCh. 9 - Prob. 48CRPCh. 9 - Prob. 49CRPCh. 9 - Prob. 50CRPCh. 9 - Prob. 51CRPCh. 9 - Prob. 52CRPCh. 9 - Prob. 53CRPCh. 9 - Prob. 54CRPCh. 9 - Prob. 55CRPCh. 9 - Prob. 56CRPCh. 9 - Prob. 57CRPCh. 9 - Prob. 58CRPCh. 9 - Prob. 59CRPCh. 9 - Prob. 60CRPCh. 9 - Prob. 61CRPCh. 9 - Prob. 62CRPCh. 9 - Prob. 1SICh. 9 - Prob. 2SICh. 9 - Prob. 3SICh. 9 - Prob. 4SICh. 9 - Prob. 5SICh. 9 - Prob. 6SICh. 9 - Prob. 7SICh. 9 - Prob. 8SICh. 9 - Prob. 9SICh. 9 - Prob. 10SI
Knowledge Booster
Similar questions
- Please provide the Mathematica codearrow_forwardExplian this C program code. #include <stdio.h> void binary(unsigned int n) { if (n /2!=0) { binary(n /2); } printf("%d", n %2); } int main() { unsignedint number =33777; unsignedchar character ='X'; printf("Number: %u\n", number); printf("Binary: "); binary(number); printf("\nDecimal: %u\nHexadecimal: 0x%X\n\n", number, number); printf("Character: %c\n", character); printf("ASCII Binary: "); binary(character); printf("\nASCII Decimal: %u\nASCII Hexadecimal: 0x%X\n", character, character); return0; }arrow_forwardDesign a dynamic programming algorithm for the Longest Alternating Subsequence problem described below: Input: A sequence of n integers Output: The length of the longest subsequence where the numbers alternate between being larger and smaller than their predecessor The algorithm must take O(n²) time. You must also write and explain the recurrence. Example 1: Input: [3, 5, 4, 1, 3, 6, 5, 7, 3, 4] Output: 8 ([3, 5, 4, 6, 5, 7, 3, 4]) Example 2: Input: [4,7,2,5,8, 3, 8, 0, 4, 7, 8] Output: 8 ([4, 7, 2, 5, 3, 8, 0,4]) (Take your time with this for the subproblem for this one)arrow_forward
- Design a dynamic programming algorithm for the Coin-change problem described below: Input: An amount of money C and a set of n possible coin values with an unlimited supply of each kind of coin. Output: The smallest number of coins that add up to C exactly, or output that no such set exists. The algorithm must take O(n C) time. You must also write and explain the recurrence. Example 1: Input: C24, Coin values = = [1, 5, 10, 25, 50] Output: 6 (since 24 = 10+ 10+1+1 +1 + 1) Example 2: Input: C = 86, Coin values = [1, 5, 6, 23, 35, 46, 50] Output: 2 (since 86 = 46+35+5)arrow_forwardDesign a dynamic programming algorithm for the Longest Common Subsequence problem de- scribed below Input: Two strings x = x1x2 xm and y = Y1Y2... Yn Output: The length of the longest subsequence that is common to both x and y. . The algorithm must take O(m n) time. You must also write and explain the recurrence. (I want the largest k such that there are 1 ≤ i₁ < ... < ik ≤ m and 1 ≤ j₁ < ... < jk ≤ n such that Xi₁ Xi2 Xik = Yj1Yj2 ··· Yjk) Example 1: Input: x = 'abcdefghijklmnopqrst' and y = 'ygrhnodsh ftw' Output: 6 ('ghnost' is the longest common subsequence to both strings) Example 2: Input: x = 'ahshku' and y = ‘asu' Output: 3 ('asu' is the longest common subsequence to both strings)arrow_forwardDesign a dynamic programming algorithm for the problem described below Input: A list of numbers A = = [a1,..., an]. Output: A contiguous subsequence of numbers with the maximum sum. The algorithm must take O(n) time. You must also write and explain the recurrence. (I am looking for an i ≥ 1 and k ≥ 0 such that a + ai+1 + ···ai+k has the largest possible sum among all possible values for i and k.) Example 1: Input: A[5, 15, -30, 10, -5, 40, 10]. Output: [10, 5, 40, 10] Example 2: Input: A = [7, 5, 7, 4, -20, 6, 9, 3, -4, -8, 4] Output: [6,9,3]arrow_forward
- Design a dynamic programming algorithm for the Longest Increasing Subsequence problem described below: Input: A sequence of n integers Output: The length of the longest increasing subsequence among these integers. The algorithm must take O(n²) time. You must also write and explain the recurrence. Example 1: Input: [5, 3, 6, 8, 4, 6, 2, 7, 9, 5] Output: 5 ([3, 4, 6, 7, 9]) Example 2: Input: [12, 42, 66, 73, 234, 7, 543, 16] Output: 6 ([42, 66, 73, 234, 543])arrow_forwardDesign a dynamic programming algorithm for the Subset Sum problem described below: Input: A set of n integers A and an integer s Output: A subset of A whose numbers add up to s, or that no such set exists. The algorithm must take O(n·s) time. You must also write and explain the recurrence. Example 1: Input: A = {4, 7, 5, 2, 3}, s = 12 Output: {7,2,3} Example 2: Input: A{4, 7, 5,3}, s = 6 Output: 'no such subset'arrow_forwardTECNOLOGIE DEL WEB 2023/2023 (VER 1.1) Prof. Alfonso Pierantonio 1. Project Requirements The project consists in designing and implementing a Web application according to the methodology and the technologies illustrated and developed during the course. This document describe cross-cutting requirements the application must satisfy. The application must be realized with a combination of the following technologies: PHP MySQL HTML/CSS JavaScript, jQuery, etc templating The requirements are 2. Project size The application must have at least 18 SQL tables The number of SQL tables refers to the overall number of tables (including relation normalizations). 3. Methodology The application must be realized by adopting separation of logics, session management, and generic user management (authentication/permissions). Missing one of the above might correspond to a non sufficient score for the project. More in details: 3.1 Separation of Logics The separation of logics has to be realizse by using…arrow_forward
- Write a C program to calculate the function sin(x) or cos(x) using a Taylor series expansion around the point 0. In other words, you will program the sine or cosine function yourself, without using any existing solution. You can enter the angles in degrees or radians. The program must work for any input, e.g. -4500° or +8649°. The function will have two arguments: float sinus(float radians, float epsilon); For your own implementation, use one of the following relations (you only need to program either sine or cosine, you don't need both): Tip 1: Of course, you cannot calculate the sum of an infinite series indefinitely. You can see (if not, look in the program) that the terms keep getting smaller, so there will definitely be a situation where adding another term will not change the result in any way (see problem 1.3 – machine epsilon). However, you can end the calculation even earlier – when the result changes by less than epsilon (a pre-specified, sufficiently small number, e.g.…arrow_forwardWrite a C program that counts the number of ones (set bits) in the binary representation of a given number. Example:Input: 13 (binary 1101)Output: 3 unitsarrow_forwardI need help to resolve or draw the diagrams. thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Information SystemsComputer ScienceISBN:9781337097536Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningFundamentals of Information SystemsComputer ScienceISBN:9781305082168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning

Fundamentals of Information Systems
Computer Science
ISBN:9781337097536
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Fundamentals of Information Systems
Computer Science
ISBN:9781305082168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning

Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
