
College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 16PE
A gymnast is attempting to perform splits. From the information given in Figure 9.36, calculate the magnitude and direction of the force exerted on each foot by the floor.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
No chatgpt pls will upvote
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 9 Solutions
College Physics
Ch. 9 - What can you say about the velocity of a moving...Ch. 9 - Under what conditions can a rotating body be in...Ch. 9 - What three factors affect the torque created by a...Ch. 9 - A wrecking ball is being used to knock down a...Ch. 9 - Mechanics put a length of Pipe over the handle of...Ch. 9 - A round pencil lying on its side as in Figure 9.13...Ch. 9 - Explain the need for tall towers on a suspension...Ch. 9 - When visiting some countries, you may see a person...Ch. 9 - Scissors are like a double-lever "Stem, Which of...Ch. 9 - Suppose you pull a nail at a constant rate using a...
Ch. 9 - Why are the forces exerted on the outside world by...Ch. 9 - Explain why the forces in our joints are several...Ch. 9 - Why are the forces exerted on the outside world by...Ch. 9 - Explain why the forces in our joints are several...Ch. 9 - Certain of dinosaurs were bipedal (walked on two...Ch. 9 - Swimmers and athletes during competition need to...Ch. 9 - If the maximum force the biceps muscle can exert...Ch. 9 - Suppose the biceps muscle was attached through...Ch. 9 - Explain one of the reasons why pregnant women...Ch. 9 - (a) When opening a door, you push on it...Ch. 9 - When tightening a bolt, you push perpendicularly...Ch. 9 - Two children push on opposite sides of a door...Ch. 9 - Use the second condition for equilibrium (net =0 )...Ch. 9 - Repeat the seesaw problem in Example 9.1 with the...Ch. 9 - Suppose a horse leans against a wall as in Figure...Ch. 9 - Two children of mass 20.0 kg and 30.0 kg sit...Ch. 9 - (a) Calculate the magnitude and direction of the...Ch. 9 - A person carries a plank of wood 2.00 m long with...Ch. 9 - A 17.0-m-high and 11.0-m-long wall under...Ch. 9 - (a) What force must be exerted by the wind to...Ch. 9 - Suppose the weight of the drawbridge in Figure...Ch. 9 - Suppose a 900-kg car is on the bridge in Figure...Ch. 9 - A sandwich board advertising sign is constructed...Ch. 9 - (a) What minimum coefficient of friction is needed...Ch. 9 - A gymnast is attempting to perform splits. From...Ch. 9 - To get up on the roof, a person (mass 70.0 kg)...Ch. 9 - In Figure 9.21, the cg of the pole held by the...Ch. 9 - What is the mechanical advantage of a nail puller...Ch. 9 - Suppose you needed to raise a 250-kg mower a...Ch. 9 - a) What is the mechanical advantage of a...Ch. 9 - A typical car has an axle with 1.10 cm radius...Ch. 9 - What force does the nail puller in Exercise 9.19...Ch. 9 - If you used an ideal pulley of the type shown in...Ch. 9 - Repeat Exercise 9.24 for the pulley shown in...Ch. 9 - Verity that the force in the elbow joint in...Ch. 9 - Two muscles in the back of the leg pull on the...Ch. 9 - The upper leg muscle (quadriceps) exerts a force...Ch. 9 - A device for exercising the upper leg muscle is...Ch. 9 - A person working at a drafting board may hold her...Ch. 9 - We analyzed the biceps muscle example with the...Ch. 9 - Even when the head is held erect, as in Figure...Ch. 9 - A 75-kg man stands on his toes by exerting an...Ch. 9 - A father lifts his child as shown in Figure 9.43....Ch. 9 - Unlike most of the other muscles in our bodies,...Ch. 9 - Integrated Concepts Suppose we replace the 4.0-kg...Ch. 9 - (a) What force should the woman in Figure 9.45...Ch. 9 - You have just planted a sturdy 2-m-tall palm tree...Ch. 9 - Unreasonable Results Suppose two children are...Ch. 9 - Construct Your Own Problem Consider a method for...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Write a single sentence, using no more than 25 words, to summarize each of the following cellular processes...
Human Anatomy & Physiology (2nd Edition)
Refer to figure 10.2 to find the electronegativity different between each of elements; then refer to Table 10.2...
Introductory Chemistry (6th Edition)
l. Suppose you have the uniformly charged cube in FIGURE Q24.1. Can you use symmetry alone to deduce the shape ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
3. Trails that are derived from a common ancestor, like the bones of human arms and bird wings, are said to be_...
Biological Science (6th Edition)
Compare and contrast aerobic respiration, anaerobic respiration, and fermentation.
Microbiology with Diseases by Body System (5th Edition)
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Similar questions
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning