College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 16PE
A gymnast is attempting to perform splits. From the information given in Figure 9.36, calculate the magnitude and direction of the force exerted on each foot by the floor.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 10 N ball is supported by an incline and a cable making an angle a with the
vertical direction. Knowing the force in the cable equal to 5 N, determine the
angle a and the force exerted by the ball on the incline. Consider the ball as a
particle.
In order to get his car out of the mud, a man ties one end of a rope to the front bumper and the other end to a tree 7.4 m away, as shown below. He then pulls on the center of the rope with a force of
490 N, which causes its center to be displaced 0.98 m, as shown. What is the force (in N) of the rope on the car? (Enter the magnitude.)
490 N
0.98 m
7.4 m
The 370-kg uniform I-beam supports the load shown. Determine the reactions at the supports.
Answers:
Ax=
Ay
By=
i
i
i
-5.6 m
+-2.4 m
230 kg
B
N
N
N
Chapter 9 Solutions
College Physics
Ch. 9 - What can you say about the velocity of a moving...Ch. 9 - Under what conditions can a rotating body be in...Ch. 9 - What three factors affect the torque created by a...Ch. 9 - A wrecking ball is being used to knock down a...Ch. 9 - Mechanics put a length of Pipe over the handle of...Ch. 9 - A round pencil lying on its side as in Figure 9.13...Ch. 9 - Explain the need for tall towers on a suspension...Ch. 9 - When visiting some countries, you may see a person...Ch. 9 - Scissors are like a double-lever "Stem, Which of...Ch. 9 - Suppose you pull a nail at a constant rate using a...
Ch. 9 - Why are the forces exerted on the outside world by...Ch. 9 - Explain why the forces in our joints are several...Ch. 9 - Why are the forces exerted on the outside world by...Ch. 9 - Explain why the forces in our joints are several...Ch. 9 - Certain of dinosaurs were bipedal (walked on two...Ch. 9 - Swimmers and athletes during competition need to...Ch. 9 - If the maximum force the biceps muscle can exert...Ch. 9 - Suppose the biceps muscle was attached through...Ch. 9 - Explain one of the reasons why pregnant women...Ch. 9 - (a) When opening a door, you push on it...Ch. 9 - When tightening a bolt, you push perpendicularly...Ch. 9 - Two children push on opposite sides of a door...Ch. 9 - Use the second condition for equilibrium (net =0 )...Ch. 9 - Repeat the seesaw problem in Example 9.1 with the...Ch. 9 - Suppose a horse leans against a wall as in Figure...Ch. 9 - Two children of mass 20.0 kg and 30.0 kg sit...Ch. 9 - (a) Calculate the magnitude and direction of the...Ch. 9 - A person carries a plank of wood 2.00 m long with...Ch. 9 - A 17.0-m-high and 11.0-m-long wall under...Ch. 9 - (a) What force must be exerted by the wind to...Ch. 9 - Suppose the weight of the drawbridge in Figure...Ch. 9 - Suppose a 900-kg car is on the bridge in Figure...Ch. 9 - A sandwich board advertising sign is constructed...Ch. 9 - (a) What minimum coefficient of friction is needed...Ch. 9 - A gymnast is attempting to perform splits. From...Ch. 9 - To get up on the roof, a person (mass 70.0 kg)...Ch. 9 - In Figure 9.21, the cg of the pole held by the...Ch. 9 - What is the mechanical advantage of a nail puller...Ch. 9 - Suppose you needed to raise a 250-kg mower a...Ch. 9 - a) What is the mechanical advantage of a...Ch. 9 - A typical car has an axle with 1.10 cm radius...Ch. 9 - What force does the nail puller in Exercise 9.19...Ch. 9 - If you used an ideal pulley of the type shown in...Ch. 9 - Repeat Exercise 9.24 for the pulley shown in...Ch. 9 - Verity that the force in the elbow joint in...Ch. 9 - Two muscles in the back of the leg pull on the...Ch. 9 - The upper leg muscle (quadriceps) exerts a force...Ch. 9 - A device for exercising the upper leg muscle is...Ch. 9 - A person working at a drafting board may hold her...Ch. 9 - We analyzed the biceps muscle example with the...Ch. 9 - Even when the head is held erect, as in Figure...Ch. 9 - A 75-kg man stands on his toes by exerting an...Ch. 9 - A father lifts his child as shown in Figure 9.43....Ch. 9 - Unlike most of the other muscles in our bodies,...Ch. 9 - Integrated Concepts Suppose we replace the 4.0-kg...Ch. 9 - (a) What force should the woman in Figure 9.45...Ch. 9 - You have just planted a sturdy 2-m-tall palm tree...Ch. 9 - Unreasonable Results Suppose two children are...Ch. 9 - Construct Your Own Problem Consider a method for...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
A square bar of mass m and resistance R is sliding without friction down very long, parallel conducting rails o...
University Physics Volume 2
2. (I) The head of a hammer with a mass of 1.2 kg is allowed to fall onto a nail from a height of 0.50 m. What ...
Physics: Principles with Applications
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
3. Suppose the door of a room makes an airtight, but frictionless, fit in its frame. Do you think you could ope...
College Physics (10th Edition)
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
Knowledge Booster
Similar questions
- A bowler holds a bowling ball (M = 6.9 kg) in the palm of his hand (see the figure below). His upper arm is vertical, his lower arm (2.1 kg) is horizontal. Biceps Elbow contact point Lower arm (forearm plus hand) center +4.0 am 15 cm - -33 cm- of mass (a) What is the magnitude of the force of the biceps muscle on the lower arm? N (b) What is the magnitude of the force between the bony structures at the elbow contact point?arrow_forwardPlease help mearrow_forwardThe 585-kg uniform I-beam supports the load shown. Determine the reactions at the supports. -6.1 m Answers: Ax= B,= i i +1.9 m 290 kg N N Narrow_forward
- Conceptual Example 7 provides useful background for this problem. Workershave loaded a delivery truck in such a way that its center ogravity is only slightly forward of the rear axle, as shown in the drawing.The mass of the truck and its contents is 7460 kg. Find the magnitudes of the forces exerted by the ground on (a) the front wheels and (b) the rear wheels of the truck.arrow_forwardA 3000-lb car is parked on a 30° slope, facing uphill. The center of mass of the car is halfway between the front and rear wheels and is 2 ft above the ground. The wheels are 8 ft apart. Find the normal force exerted by the road on the front wheels and on the rear wheels. 0 = 30° l = 2 ft 2 = 4 ft mg Hints : The car is in stationary equilibrium, so : 1) the total force on the car must be 0 (i.e., along the incline and perpendicular to it), 2) the total torque about any point must be 0. (choose as point of rotation the center of mass) Remember friction is: f = µ N Three equations , three unknowns. Solve for N1 and N2.arrow_forwardThe 465-kg uniform I-beam supports the load shown. Determine the reactions at the supports. Answers: Ax= Ay= By= i -5.9 m- 3.1 m 200 kg zzzarrow_forward
- 7arrow_forwardHelp with physics question please quickarrow_forwardA uniform barbell has length 1.5 m and mass 60 kg. Your left hand is placed 25 cm to the left of the center, while your right hand is placed 35 cm to the right of the center. What is the magnitude of force exerted by your left hand? 420 N 823 N 343 N 294 N 245 Narrow_forward
- Suppose a 900-kg car is on the bridge in Figure shown with its center of mass halfway between the hinges and the cable attachments. (The bridge is supported by the cables and hinges only.) (a) Find the force in the cables. (b) Find the direction and magnitude of the force exerted by the hinges on the bridge.arrow_forwardA gymnast is attempting to perform splits. As she does this, you can assume that the force between her feet and the ground is directed only along her legs. She has a mass of 53 kg and the distances in the figure are given below. The distance values are a = 0.81, and h = 0.21. From the information given in the figure, calculate the magnitude of the force, in newtons, exerted on each foot by the floor.arrow_forwardYou have a summer job working downtown washing windows on skyscrapers (the pay is great and so are the medical benefits). The platform you and your partner are using to get to the windows is a meter wide and four meters long. You know from hauling the platform out of your truck countless times that it has a mass of 70 kg. It is supported by two cables, one at each end, mounted on-center to prevent the platform from tipping over as it is pulled up the side of the building at a constant speed. If you (mass of 55 kg) are standing on the platform 1 meter from one cable while your partner (mass of 87 kg) is 1.3 meters from the other cable and both of you are half a meter from the side, what is the tension in each cable? Assume the platform has a uniform mass distribution and is of negligible thickness.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning