Figure 9-44 shows an arrangement with an air track, in which a cart is connected by a cord to a hanging block. The cart has mass m 1 = 0.600 kg, and its center is initially at xy coordinates (−0.500 m, 0 m); the block has mass m 2 = 0.400 kg, and its center is initially at xy coordinates (0, −0.100 m).The mass of the cord and pulley are negligible. The cart is released from rest, and both cart and block move until the cart hits the pulley. The friction between the cart and the air track and between the pulley and its axle is negligible, (a) In unit-vector notation, what is the acceleration of the center of mass of the cart–block system? (b) What is the velocity of the com as a function of time t ? (c) Sketch the path taken by the com. (d) If the path is curved, determine whether it bulges upward to the right or downward to the left, and if it is straight, find the angle between it and the x axis. Figure 9-44 Problem 15.
Figure 9-44 shows an arrangement with an air track, in which a cart is connected by a cord to a hanging block. The cart has mass m 1 = 0.600 kg, and its center is initially at xy coordinates (−0.500 m, 0 m); the block has mass m 2 = 0.400 kg, and its center is initially at xy coordinates (0, −0.100 m).The mass of the cord and pulley are negligible. The cart is released from rest, and both cart and block move until the cart hits the pulley. The friction between the cart and the air track and between the pulley and its axle is negligible, (a) In unit-vector notation, what is the acceleration of the center of mass of the cart–block system? (b) What is the velocity of the com as a function of time t ? (c) Sketch the path taken by the com. (d) If the path is curved, determine whether it bulges upward to the right or downward to the left, and if it is straight, find the angle between it and the x axis. Figure 9-44 Problem 15.
Figure 9-44 shows an arrangement with an air track, in which a cart is connected by a cord to a hanging block. The cart has mass m1 = 0.600 kg, and its center is initially at xy coordinates (−0.500 m, 0 m); the block has mass m2 = 0.400 kg, and its center is initially at xy coordinates (0, −0.100 m).The mass of the cord and pulley are negligible. The cart is released from rest, and both cart and block move until the cart hits the pulley. The friction between the cart and the air track and between the pulley and its axle is negligible, (a) In unit-vector notation, what is the acceleration of the center of mass of the cart–block system? (b) What is the velocity of the com as a function of time t? (c) Sketch the path taken by the com. (d) If the path is curved, determine whether it bulges upward to the right or downward to the left, and if it is straight, find the angle between it and the x axis.
The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along
its axis.
5.6 m.
4 m-
B
Part A
Determine the compressive force along leg AB.
Express your answer to three significant figures and include the appropriate units.
FAB =
Value
Submit
Request Answer
Part B
Units
?
Determine the compressive force along leg CB.
Express your answer to three significant figures and include the appropriate units.
FCB=
Value
Submit
Request Answer
Part C
?
Units
Determine the tension in the winch cable DB.
Express your answer with the appropriate units.
2m
Part A
(Figure 1) shows a bucket suspended from a cable by means of a small
pulley at C.
If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long.
Express your answer to three significant figures and include the appropriate units.
Figure
4 m
B
НА
x =
Value
Submit
Request Answer
Provide Feedback
<
1 of 1
T
1 m
Units
?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.