
FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
11th Edition
ISBN: 9781119459170
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 57P
To determine
To find
a) Final speed of spring gun
b) Fraction of initial K.E. of the ball stored in the spring.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q1:
Find the volume of the object shown to the correct number of significant
figures. (
22.37 cm
9.10 cm
85.75 cm
Q2: One Astronomical Unit (A.U.) is the average distance that the Earth orbits the
Sun and is equal to 1.4960 × 1011 m. The Earth moves 2 A.U. in one year,
what is this speed in SI units? (
Q3:
Suppose a well known professor Raitman discovers Raitman's Law which
states v = Br²/at², what are the SI units of the B parameter if r,v,a, and t are
displacement, velocity, acceleration, and time, respectively? (
Because you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of
spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below.
This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble
horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…
Q6: Water in a river 1.6 km wide flows at a speed of 6.0 km h−1. A captain
attempts to cross the river in his ferry at right angles to the bank but by the
time it has reached the opposite bank the captain awakes and notices that it is
1.0 km downstream. If the captain wishes to take his boat directly across, what
angle upstream must he point the boat assuming the boat speed remains the
same? (
Q7: A student whirls a red-brown rubber stopper of mass 50 g on the end of a
nylon string in a horizontal clockwise circle of diameter 1.2 m (as seen from
above) at a constant speed of 8 m s-1. From an instant when the stopper is
moving in a northerly direction, find its change in velocity after moving round
(a) one-half of a revolution; (b) one-quarter of a revolution; (c) one-tenth of a
revolution.
Chapter 9 Solutions
FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
Ch. 9 - Figure 9-23 shows an overhead view of three...Ch. 9 - Figure 9-24 shows an overhead view of four...Ch. 9 - Consider a box that explodes into two pieces while...Ch. 9 - Figure 9-26 shows graphs of force magnitude versus...Ch. 9 - The free-body diagrams in Fig. 9-27 give, from...Ch. 9 - Figure 9-28 shows four groups of three or four...Ch. 9 - A block slides along a frictionless floor and into...Ch. 9 - Figure 9-30 shows a snapshot of block 1 as it...Ch. 9 - Two bodies have undergone an elastic...Ch. 9 - Figure 9-32: A block on a horizontal floor is...
Ch. 9 - Block 1 with mass m1 slides along an x axis across...Ch. 9 - Figure 9-34 shows four graphs of position versus...Ch. 9 - A 2.00 kg particle has the xy coordinates 1.20 m,...Ch. 9 - Figure 9-35 shows a three-particle system, with...Ch. 9 - Figure 9-36 shows a slab with dimensions d1 = 11.0...Ch. 9 - In Fig. 9-37, three uniform thin rods, each of...Ch. 9 - GO What are a the x coordinate and b the y...Ch. 9 - Figure 9-39 shows a cubical box that has been...Ch. 9 - ILW In the ammonia NH3 molecule of Fig. 9-40,...Ch. 9 - GO A uniform soda can of mass 0.140 kg is 12.0 cm...Ch. 9 - ILW A stone is dropped at t = 0. A second stone,...Ch. 9 - GO A 1000 kg automobile is at rest at a traffic...Ch. 9 - A big olive m = 0.50 kg lies at the origin of an...Ch. 9 - Prob. 12PCh. 9 - SSM A shell is shot with an initial velocity v0 of...Ch. 9 - In Figure 9-43, two particles are launched from...Ch. 9 - Figure 9-44 shows an arrangement with an air...Ch. 9 - GO Ricardo, of mass 80 kg, and Carmelita, who is...Ch. 9 - GO In Fig. 9-45a, a 4.5 kg dog stands on an 18 kg...Ch. 9 - A 0.70 kg ball moving horizontally at 5.0 m/s...Ch. 9 - ILW A 2100 kg truck traveling north at 41 km/h...Ch. 9 - GO At time t = 0, a ball is struck at ground level...Ch. 9 - A 0.30 kg softball has a velocity of 15 m/s at an...Ch. 9 - Figure 9-47 gives an overhead view of the path...Ch. 9 - Until his seventies, Henri LaMothe Fig. 9-48...Ch. 9 - In February 1955, a paratrooper fell 370 m from an...Ch. 9 - A 1.2 kg ball drops vertically onto a floor,...Ch. 9 - In a common but dangerous prank, a chair is pulled...Ch. 9 - SSM A force in the negative direction of an x axis...Ch. 9 - In tae-kwon-do, a hand is slammed down onto a...Ch. 9 - Suppose a gangster sprays Supermans chest with 3 g...Ch. 9 - Two average forces. A steady stream of 0.250 kg...Ch. 9 - Jumping up before the elevator hits. After the...Ch. 9 - A 5.0 kg toy car can move along an x axis; Fig....Ch. 9 - GO Figure 9-51 shows a 0.300 kg baseball just...Ch. 9 - Basilisk lizards can run across the top of a water...Ch. 9 - GO Figure 9-53 shows an approximate plot of force...Ch. 9 - A 0.25 kg puck is initially stationary on an ice...Ch. 9 - SSM A soccer player kicks a soccer ball of mass...Ch. 9 - In the overhead view of Fig. 9-54, a 300 g ball...Ch. 9 - SSM A 91 kg man lying on a surface of negligible...Ch. 9 - A space vehicle is traveling at 4300 km/h relative...Ch. 9 - Figure 9-55 shows a two-ended rocket that is...Ch. 9 - An object, with mass m and speed v relative to an...Ch. 9 - In the Olympiad of 708 B.C., some athletes...Ch. 9 - Prob. 44PCh. 9 - SSM WWW A 20.0 kg body is moving through space in...Ch. 9 - A 4.0 kg mess kit sliding on a frictionless...Ch. 9 - A vessel at rest at the origin of an xy coordinate...Ch. 9 - GO Particle A and particle B are held together...Ch. 9 - A bullet of mass 10 g strikes a ballistic pendulum...Ch. 9 - A 5.20 g bullet moving at 672 m/s strikes a 700 g...Ch. 9 - GO In Fig. 9-58, a 3.50 g bullet is fired...Ch. 9 - GO In Fig. 9-59, a 10 g bullet moving directly...Ch. 9 - Prob. 53PCh. 9 - A completely inelastic collision occurs between...Ch. 9 - ILW A 5.0 kg block with a speed of 3.0 m/s...Ch. 9 - In the before part of Fig. 9-60, car A mass 1100...Ch. 9 - Prob. 57PCh. 9 - In Fig. 9-62, block 2 mass 1.0 kg is at rest on a...Ch. 9 - ILW In Fig. 9-63, block 1 mass 2.0 kg is moving...Ch. 9 - Module 9-7 Elastic Collisions in One Dimension In...Ch. 9 - SSM A cart with mass 340 g moving on a...Ch. 9 - Two titanium spheres approach each other head-on...Ch. 9 - Block 1 of mass m1 slides along a frictionless...Ch. 9 - GO A steel ball of mass 0.500 kg is fastened to a...Ch. 9 - SSM A body of mass 2.0 kg makes an elastic...Ch. 9 - Block 1, with mass m1 and speed 4.0 m/s, slides...Ch. 9 - In Fig. 9-66, particle 1 of mass m1 = 0.30 kg...Ch. 9 - GO In Fig. 9-67, block 1 of mass m1 slides from...Ch. 9 - GO A small ball of mass m is aligned above a...Ch. 9 - GO In Fig. 9-69, puck 1 of mass m1 = 0.20 kg is...Ch. 9 - Prob. 71PCh. 9 - Ball B, moving in the positive direction of an x...Ch. 9 - After a completely inelastic collision, two...Ch. 9 - Two 2.0 kg bodies, A and B, collide. The...Ch. 9 - GO A projectile proton with a speed of 500 m/s...Ch. 9 - A 6090 kg space probe moving nose-first toward...Ch. 9 - SSM In Fig. 9-70, two long barges are moving in...Ch. 9 - Prob. 78PCh. 9 - SSM ILW A rocket that is in deep space and...Ch. 9 - An object is tracked by a radar station and...Ch. 9 - The last stage of a rocket, which is traveling at...Ch. 9 - Pancake collapse of a tall building. In the...Ch. 9 - Prob. 83PCh. 9 - Figure 9-73 shows an overhead view of two...Ch. 9 - Speed deamplifier. In Fig. 9-74, block 1 of mass...Ch. 9 - Speed amplifier. In Fig. 9-75, block 1 of mass m1...Ch. 9 - A ball having a mass of 150 g strikes a wall with...Ch. 9 - A spacecraft is separated into two parts by...Ch. 9 - SSM A 1400 kg car moving at 5.3 m/s is initially...Ch. 9 - ILW A certain radioactive parent nucleus...Ch. 9 - A 75 kg man rides on a 39 kg cart moving at a...Ch. 9 - Two blocks of masses 1.0 kg and 3.0 kg are...Ch. 9 - Prob. 93PCh. 9 - An old Chrysler with mass 2400 kg is moving along...Ch. 9 - SSM In the arrangement of Fig. 9-21, billiard ball...Ch. 9 - A rocket is moving away from the solar system at a...Ch. 9 - The three balls in the overhead view of Fig. 9-76...Ch. 9 - A 0.15 kg ball hits a wall with a velocity of 5.00...Ch. 9 - Prob. 99PCh. 9 - In a game of pool, the cue ball strikes another...Ch. 9 - Prob. 101PCh. 9 - In Fig. 9-79, an 80 kg man is on a ladder hanging...Ch. 9 - In Fig. 9 80, block 1 of mass m1 = 6.6 kg is at...Ch. 9 - Prob. 104PCh. 9 - SSM A 3.0 kg object moving at 8.0 m/s in the...Ch. 9 - A 2140 kg railroad flatcar, which can move with...Ch. 9 - SSM A 6100 kg rocket is set for vertical firing...Ch. 9 - A 500.0 kg module is attached to a 400.0 kg...Ch. 9 - SSM a How far is the center of mass of the...Ch. 9 - A 140 g ball with speed 7.8 m/s strikes a wall...Ch. 9 - SSM A rocket sled with a mass of 2900 kg moves at...Ch. 9 - SSM A pellet gun fires ten 2.0 g pellets per...Ch. 9 - A railroad car moves under a grain elevator at a...Ch. 9 - Figure 9-82 shows a uniform square plate of edge...Ch. 9 - SSM At time t = 0, force F1=(4.00i+5.00j) N acts...Ch. 9 - Two particles P and Q are released from rest 1.0 m...Ch. 9 - A collision occurs between a 2.00 kg particle...Ch. 9 - In the two-sphere arrangement of Fig. 9-20, assume...Ch. 9 - In Fig. 9-83, block 1 slides along an x axis on a...Ch. 9 - A body is traveling at 2.0 m/s along the positive...Ch. 9 - An electron undergoes a one-dimensional elastic...Ch. 9 - Prob. 122PCh. 9 - An unmanned space probe of mass m and speed v...Ch. 9 - A 0.550 kg ball falls directly down onto concrete,...Ch. 9 - An atomic nucleus at rest at the origin of an xy...Ch. 9 - Particle 1 of mass 200 g and speed 3.00 m/s...Ch. 9 - During a lunar mission, it is necessary to...Ch. 9 - Prob. 128P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Q9: When a wedding ring is thrown horizontally out of a fifth-floor window 15 m off the ground, it lands 7.5 m out from the base of the building. Calculate the throwing speed; (a) (b) the impact velocity; (c) how long the marriage will last. Q10: A girl on a sled with a combined mass of 50.0- kg slides down a frictionless hill from rest. When she gets to the bottom of the hill, she is traveling at 3.00 m/s. How high is the hill?" m = 50.0 kg HILL v, 3.00 m/s ■ 0 (ground)arrow_forwardThis is data I collected from a Centripetal Acceleration and Force lab. Please help with interpreting the data, thanks!arrow_forwardAnswer thisarrow_forward
- A coin is located 20.0 cm to the left of a converging lens. (f=13.0cm). A second, identical lens is placed to the right of the first lens, such that the image formed by the combination. has the same size and orientation as the original coin. Find the separation between the lenses.arrow_forwardA converging lens (f₁ = 10.9cm) is located 33.0 cm to the left of a diverging lens (f2=-5.64 cm). A postage stamp is placed 35.4 cm to the left of the converging lens. Find the overall magnificationarrow_forwardA farsighted man uses contact lenses with a refractive power of 2.00 diopters. Wearing the contacts, he is able to yead books held no closer than 25.0 cm from would like a his eyes. He prescription for eyeglasses to serve the same purpose. What is the correct prescription for the eyeglasses if the distance from the eyeglasses to his eyes is 200 cm 2.00 dioptersarrow_forward
- from a concave lens. The An object 5.3cm tall is 25.0 cm from resulting image is two-fifths is two-fifths as large the focal length of the lens? as the object. What is as cmarrow_forwardThe drawing shows a rectangular block of glass (n=1.56) surrounded by liquid carbon disulfide (n=1.64). A ray of light is incident on the glass at point A with a O₁ = 47.0° angle of incidence. At what angle of refraction does the ray leave the glass at point B? A Barrow_forwardThere is a magic item in Dungeons & Dragons called The Baton of Many Sizes, which is a staff that can magically change lengths between 0.305 m (1 foot) long and 15.2 m (50 feet) long, though it always has a mass of 3.18 kg. Assume the moment of inertia of the staff is 112mL2112mL2 where L is the total length. The angular acceleration is 4.9075 rad/s^2, the angular velocity is 17.57 rad/s. The staff then shrinks to a length of 1.12 m while no longer applying any torque. What is the staff’s new angular velocity?arrow_forward
- Finding my misplace science book what are the steps to in the given flowchart observe and question from a hypothesis test the hypothesis analyse and then the plate form a new hypothesis is the new hypot this is form a conclusionarrow_forwardSamus Aran from the Metroid series of video games has the ability to roll into a ball to get into smaller areas. Samus rolls down a path which drops down 22.0 m. If she was at rest when she started at the top, what is her linear velocity at the bottom of the path? Treat her as a solid sphere with a moment of inertia of 2/5 mr^2 .arrow_forwardMoon Knight, from both comics and the show of the same name, has crescent shaped daggers he throws at enemies. To throw a crescent dagger he applies a force of 0.918 N at an angle of 75.0° relative to the dagger’s center of mass at a point 0.0690 m away from the dagger’s center of mass. If the crescent dagger has a moment of inertia of 2.57⋅10^−5 kg⋅m^2 , what is the angular acceleration of a crescent dagger as it is thrown?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning