Concept explainers
(a)
Interpretation:
The partial pressure of the water vapour is to be determined.
(a)
Explanation of Solution
Given Information: Table 9.2
The partial pressure of a gas in a mixture is defined as the force exerted by the molecules of that gas per unit area if it alone occupies the entire volume of the container in which the mixture is kept. It depends upon the mole fraction of the gas. The partial pressure of water vapor at different temperatures is standardized in table 9.2.
At
(b)
Interpretation:
The partial pressure of oxygen using the ratio of
(b)
Explanation of Solution
The molecular level image shows that there are
(c)
Interpretation:
The total pressure of the gas collected is to be determined.
(c)
Explanation of Solution
Dalton’s law of partial pressure states that in a mixture, the total pressure exerted by the mixture of gases is equal to the sum of partial pressures exerted by each individual gas.
The partial pressure of water vapor is
(d)
Interpretation:
The number of moles of oxygen gas collected is to be determined.
(d)
Explanation of Solution
The ideal gas equation states that the pressure
Here,
The volume of the collected gas is
Convert
Convert
Convert temperature units from degree Celsius to Kelvin as follows:
Convert temperature
Convert pressure units from
Convert pressure
Substitute
So, the number of moles of oxygen gas collected is
(e)
Interpretation:
The number of moles of
(e)
Explanation of Solution
The reaction is as follows:
According to the reaction,
So,
The number of moles of
Want to see more full solutions like this?
Chapter 9 Solutions
Introduction To Chemistry 5th Edition
- In intercalation compounds, their sheets can be neutral or have a negative or positive charge, depending on the nature of the incorporated species and its structure. Is this statement correct?arrow_forwardThis thermodynamic cycle describes the formation of an ionic compound MX2 from a metal element M and nonmetal element X in their standard states. What is the lattice enthalpy of MX2 ? What is the enthalpy formation of MX2 ? Suppose both the heat of sublimation of M and the ionization enthalpy of M were smaller. Would MX2 be more stable? Or less? or impossible to tell without more information?arrow_forward7. Draw the mechanism to describe the following transformation: Note: This is a base catalyzed reaction. So, the last steps must make [OH]- OH [OH]¯ OH Heat Oarrow_forward
- We are practicing calculating for making solutions. How would I calculate this?arrow_forwardBr. , H+ .OH Mg ether solvent H+, H₂O 17. Which one of the compounds below is the final product of the reaction sequence shown above? HO A HO HO OH D B OH HO OH C OH HO OH Earrow_forward8:57 PM Sun Jan 26 Content ← Explanation Page X Content X ALEKS Jade Nicol - Le A https://www-av C www-awa.aleks.com O States of Matter Understanding consequences of important physical properties of liquids ? QUESTION Liquid A is known to have a lower viscosity and lower surface tension than Liquid B. Use these facts to predict the result of each experiment in the table below, if you can. experiment Liquid A and Liquid B are each pumped through tubes with an inside diameter of 27.0 mm, and the pressures PA and PB needed to produce a steady flow of 2.4 mL/s are measured. 25.0 mL of Liquid A are poured into a beaker, and 25.0 mL of Liquid B are poured into an identical beaker. Stirrers in each beaker are connected to motors, and the forces FA and FB needed to stir each liquid at a constant rate are measured. predicted outcome OPA will be greater than PB OPA will be less than PB OPA will be equal to PB It's impossible to predict whether PA or PB will be greater without more information.…arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning