
Traffic and Highway Engineering
5th Edition
ISBN: 9781305156241
Author: Garber, Nicholas J.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 13P
To determine
The three measures which are used to describe service quality for a two-lane highway and which of these measures are used to describe the level of service for class I, class II, class III highways.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Determine the daily volume of methane and total gas produced in an anaerobic
digester if the biosolids flow rate is 200 m³/d and the COD concentration going into
the reactor is 5,000 g/m³. Assume yield is 0.05 g VSS/g COD, that there is 90%
COD removal, and that methane is 50% of the total gas volume. Assume that actual
gas production at the operating temperature is 0.4 L of CH4 per g of COD. Express
your answer in m³/d and round to the nearest integer.
Considering the following stoichiometry shown below, calculate the theoretical true
yield of bacteria that use the organic molecule butyrate (C4 H7O2¯) as their
source of energy. Express your answer with the units of grams of C5 H7O2 N per
gram of O2 and round to the nearest 0.01.
Stoichiometric relationship for the microbial oxidation of butyrate with O₂ as terminal electron acceptor
2C4H;O, +502+NHẠ* → C5 H7O2 N + 5H2O+ HCO3 + CO2
Stoichiometric relationship for the complete oxidation of butyrate
C4H7O2 +502 + H+ →4CO2+4H₂O
Refer to the figure below. Given: L₁ = 4m, L2 = 8 m, l₁ = l2 = 2 m, y = 16 kN/m³, Ysat = 18.5 kN/m³, and ' = 26°. Use the charts presented below the answer fields.
Sand
c' = 0
Anchor
L₁
Water table
Sand
Ysat
c' 0
$'
Sand
c' = 0
1. Determine the theoretical depth of penetration.
(Enter your answer to two significant figures.)
D=
m
2. Determine the anchor force per unit length.
(Enter your answer to two significant figures.)
F=
kN/m
3. Determine the maximum moment in the sheet pile.
(Enter your answer to two significant figures.)
CDL₁
Mmax =
0.5
kN-m/m
0.4-
-24= &'
26°
0.3
-28°
30°
32°
0.2
34°
36°
38°
0.1
0.0
0.1
0.2
0.3
0.4
0.5
1.18
1.16
1.14
1.12
1.10
1.08
1.06
1.04
4₁/(L₁+ L₂2)
L₁
4₁+12
0.3
0.2
= 0.4
Chapter 9 Solutions
Traffic and Highway Engineering
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- For the gravity concrete dam shown in the figure, the following data are available: - Unit weight of concrete (Yeone) = 2.4 ton/m³ - Horizontal earth quake coefficient (Kh) = 0.1 Neglect( Wave pressure, silt pressure, ice force) H=0.65, (Ywater) -1 ton/m³ Find :- a- heel and toe stresses (Pain & Pmas) b- factor of safety against sliding and overturning (F.S. & F.Sover). Solve in table on paper W 8m 6m 8m 94m 0.9arrow_forwardA market segment consists of 500 individuals. A Logit mode choice model (with logit parameter equal to 1) has been estimated for this market resulting in the following utility function: U = ẞm 0.40C 0.037 where C is out-of-pocket cost in $ and T is travel time in min. Values of ẞm are: Bus: 0.00; Rail: 0.50; Car: 1.50. For a particular origin-destination pair, the cost of a car trip is $2 and the duration 8 minutes, a rail trip is $1.50 and takes 12 minutes, while a bus takes 20 minutes and costs $1.25. a. Predict the number of trips for each mode. b. Which one of the following policies would lead to the largest increase in bus passengers? Why? (i) An increase in the price of gas that increases the cost of a car trip to $3, while all other parameters remain constant. (ii) Introducing an express service that decreases the travel time of the rail to 10 min, while all other parameters remain constant. (iii) Decrease the cost of the bus to $1, while all other parameters remain constant.arrow_forwardQ1: For the gravity concrete dam shown in the figure, the following data are available: -Unit weight of concrete (Y)-2.4 ton/m Neglect Wave pressure, silt pressure, ice force and carth quake force) -0.65, (7) 1 ton/m' Find factor of safety against sliding and overturning (F.Sas & F.Ser), If heel and toe stresses (P & Pan) are 57.17ton/m² and 84.53 ton/m² respectively. Solve in table on paper w.s.i 83m 10m 8m 80marrow_forward
- In this question, we are going to learn about the gravity model. As discussed in class, an alternative and frequent way to model the demand is doing it in 4 steps: Generation/Attraction, Distribution, Mode choice, and Route choice. In the generation/attraction step, we estimate the number of trips that depart and arrive from each zone, in a similar way as we studied generation in the lectures. The idea of the distribution step is, taking the generation and attraction numbers as known, estimate the number of people going from each zone to each zone. Let's be precise: Consider that you know O₂ for every zone i, representing the number of users that have i as their origin. Similarly, you know Dj, representing the number of users that have j as their destination. We want to estimate Mij, i.e., the number of users going from i to j. The matrix Marrow_forward= a2+ Assume an origin is connected to a destination with two routes. Assume the travel time of each route has a linear relationship with the traffic flow on the route (t₁ = α₁ + b₁x₁ ; t₂ b2x2). Determine under what condition (e.g. a relationship among the parameters of the performance functions) tolling cannot reduce the total travel time of the two routes.arrow_forwardA suburb has 2000 households. The council hired two transport consulting companies to predict the generated work trips from within the suburb after building a few residential complexes. The new buildings will increase the number of households to 2500. The following information is provided: Type Household Size Household Count Projected Household Count 1 1 500 800 2 2 800 900 3 3 700 800 Each company has conducted different travel surveys from 200 households based on different sampling methods. The work trip generation models are as follows: Company A: T₁ = -0.1 + 0.8 (household size) Company B: T₁ = 0.1 + 0.5 (household size) a. If the total number of current work trips is 2700, which model should be used for prediction? Why? b. What are the possible reasons for the difference between the two models? C. As a transport engineer working for council, propose a new and more accurate model based on Companies A and B models. d. Based on the new model in Part C, predict the number of work…arrow_forward
- Consider the following static route choice problem where 110 vehicles travel from point A to point B. The corresponding travel time (in minutes) of each link is as follows: t₁ = x1; t₂ = x2 + 20; t3 = x3 + 10; t₁ = 3x4 where x; denotes the number of vehicles that choose link i. Find the number of vehicles that travel on each link when a. The user equilibrium condition (UE) is satisfied, where vehicles select the route with the minimum travel time; and b. The system optimum condition (SO) is satisfied, where the total travel time is minimised. C. Report the total delay savings when satisfying SO instead of UE. 2 A B 3 4arrow_forwardIt is known that 5000 automobile trips are generated in a large residential area from 12:00 PM to 1:00 PM on Saturdays for shopping purposes. Four major shopping centres have the following characteristics: Shopping Centre 1 2 3 4 Distance from residential area (km) 4 9 8 14 Commercial floor space (thousands of m²) 20 15 30 60 Using a Logit model (with logit parameter equal to 1), the following utility function is estimated for the residents' choice of shopping destination: U = -0.283 X1 + 0.172 X2 where X1 is distance from residential area (km) X2 is commercial floor space (thousands of m²) Determine the number of shopping trips to each of the four shopping centres. Are the signs of the parameter coefficients reasonable? Discuss.arrow_forwardTITLE: DESIGN OF SINGLY REINFORCED RECTANGULAR BEAMS USING STRENGTH DESIGN METHOD. PROBLEM: Design a rectangular concrete beam section for positive moment and negative moment for the loads (unfactored) and p values given. Show sketch of cross section, including bar size, arrangement and spacing. Use concrete weight = 236 kN/m³, fy = 414 MPa, f`c = 27.6 MPa, p = 0.5Pmax concrete cover = 40 mm, tie bar = 10 mm Ø.Deadload : w₁₁ = 90 kN/m Live Load: WLL = 40 kN/m and PLL = 3kN. Assume beam weight equal to 8 kN/m. PLL W = WDL + WLL +Selfweight of beam 3.5m 7 m 3.5m Use p =Pmax (SUPPORT ONLY) COMPUTATION: Required: 1. Factored Load 2. Required moment Mu, using NSCP 2015 load combination. a. at the left support b. at the mid-span c. at the right support 3. Design a singly reinforced rectangular beam: a. at the left support b. at the mid-span c. at the right support Use b=0.54d and 32-mm diameter bar. 4. Check adequacy: a. at the left support b. at the mid-span c. at the right support SKETCHarrow_forward
- For the truss and loading shown given that thedistances AD=DG=12, BE=EH=12, and GH=12, determine the forcesof each memberarrow_forwardس 1 تم أخذ قرار استثماري من قبل احدى الشركات المتخصصة في مجال البيئة والطاقة بالدخول في مشروع انشاء ابنية مستدامة وثبتت الشركة رغبتها بالحصول على عائد سنوي ثابت مقداره 50,000 دولار لمدة ثمانية سنوات بالاضافة الى عائد يغطي سداد ايجار مقر الشركة مقداره 35,000 دولار كل اربع سنوات, فاذا كانت المصاريف التشغيلية السنوية 20,000 دولار و نسبة الفائدة 10% % ماهو المبلغ الواجب استثماره من قبل الشركة لغرض تحقيق هذه العوائد؟ س2/ احسب القيمة المستقبلية المكافئة ( Future worth value ) للمشروع الاستثماري المبينة بياناته الاقتصادية في ادناه رأس المال Investment Cost الفقرة تكاليف التشغيل السنوية Annual Operating Cost العوائد السنوية Annual Revenue عمر المشروع Useful life Interest rate نسبة الفائدة Inflation rate نسبة التضخم المبلغ ($) 800,000 30,000 150,000 10 years 12% 4%arrow_forwardResuelve el problema unoarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning

Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning