ALEKS 360 AC INTRD CHEM >I<
5th Edition
ISBN: 9781260977585
Author: BAUER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 125QP
Interpretation Introduction
Interpretation:
The final temperature of the balloon is to be determined.
Concept Introduction:
Gay Lussac’s law gives a relation between pressure and temperature at fixed volume. The pressure of a gas is directly proportional to the temperature of the gas when the volume of the gas is constant. When the pressure of the gas is increased, the temperature of the gas also increases at fixed volume.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A very small helium-filled balloon has a volume of 351.6 mL. At the point you released the balloon, the pressure was 741.8 mmHg at 24.82ºC. What is the volume of the balloon (in liters) once it has ascended into the stratosphere where the pressure is 0.727 mmHg and a temperature of -52.3ºC?
Please solve this on a sheet of paper. I have attached the "formula" which should help with solving the problem.
A 21 L cylinder containing helium gas at a pressure of 34.2 atm is used to fill a weather balloon in order to lift equipment into the stratosphere. To what maximum pressure (in atm) could a 288 L balloon be filled.
Chapter 9 Solutions
ALEKS 360 AC INTRD CHEM >I<
Ch. 9 - Prob. 1QCCh. 9 - Prob. 2QCCh. 9 - Prob. 3QCCh. 9 - Prob. 4QCCh. 9 - Prob. 5QCCh. 9 - Prob. 1PPCh. 9 - Prob. 2PPCh. 9 - What pressure is needed to compress 455 mL of...Ch. 9 - Prob. 4PPCh. 9 - Prob. 5PP
Ch. 9 - Prob. 6PPCh. 9 - Prob. 7PPCh. 9 - Prob. 8PPCh. 9 - Prob. 9PPCh. 9 - Prob. 10PPCh. 9 - Prob. 11PPCh. 9 - Prob. 12PPCh. 9 - Prob. 13PPCh. 9 - Prob. 14PPCh. 9 - Prob. 15PPCh. 9 - Prob. 16PPCh. 9 - Prob. 17PPCh. 9 - Prob. 18PPCh. 9 - Prob. 1QPCh. 9 - Prob. 2QPCh. 9 - Prob. 3QPCh. 9 - Prob. 4QPCh. 9 - A series of organic compounds called the alkanes...Ch. 9 - Prob. 6QPCh. 9 - Prob. 7QPCh. 9 - Prob. 8QPCh. 9 - Prob. 9QPCh. 9 - Prob. 10QPCh. 9 - Prob. 11QPCh. 9 - Prob. 12QPCh. 9 - Prob. 13QPCh. 9 - Prob. 14QPCh. 9 - Prob. 15QPCh. 9 - Prob. 16QPCh. 9 - Prob. 17QPCh. 9 - Prob. 18QPCh. 9 - Prob. 19QPCh. 9 - Prob. 20QPCh. 9 - Prob. 21QPCh. 9 - Prob. 22QPCh. 9 - Prob. 23QPCh. 9 - Prob. 24QPCh. 9 - Prob. 25QPCh. 9 - Prob. 26QPCh. 9 - Prob. 27QPCh. 9 - Prob. 28QPCh. 9 - Prob. 29QPCh. 9 - Prob. 30QPCh. 9 - Prob. 31QPCh. 9 - Prob. 32QPCh. 9 - Prob. 33QPCh. 9 - Prob. 34QPCh. 9 - Prob. 35QPCh. 9 - Prob. 36QPCh. 9 - Prob. 37QPCh. 9 - Prob. 38QPCh. 9 - Prob. 39QPCh. 9 - Prob. 40QPCh. 9 - Prob. 41QPCh. 9 - Prob. 42QPCh. 9 - Prob. 43QPCh. 9 - Prob. 44QPCh. 9 - Prob. 45QPCh. 9 - Prob. 46QPCh. 9 - Prob. 47QPCh. 9 - Prob. 48QPCh. 9 - Prob. 49QPCh. 9 - Prob. 50QPCh. 9 - Prob. 51QPCh. 9 - Prob. 52QPCh. 9 - Prob. 53QPCh. 9 - Prob. 54QPCh. 9 - Prob. 55QPCh. 9 - Prob. 56QPCh. 9 - Prob. 57QPCh. 9 - Prob. 58QPCh. 9 - Prob. 59QPCh. 9 - Prob. 60QPCh. 9 - Prob. 61QPCh. 9 - Prob. 62QPCh. 9 - Prob. 63QPCh. 9 - Prob. 64QPCh. 9 - Prob. 65QPCh. 9 - Prob. 66QPCh. 9 - Prob. 67QPCh. 9 - Prob. 68QPCh. 9 - Prob. 69QPCh. 9 - Prob. 70QPCh. 9 - Prob. 71QPCh. 9 - Prob. 72QPCh. 9 - Prob. 73QPCh. 9 - Prob. 74QPCh. 9 - Prob. 75QPCh. 9 - Prob. 76QPCh. 9 - Prob. 77QPCh. 9 - Prob. 78QPCh. 9 - Prob. 79QPCh. 9 - Prob. 80QPCh. 9 - Prob. 81QPCh. 9 - Prob. 82QPCh. 9 - Prob. 83QPCh. 9 - Prob. 84QPCh. 9 - Prob. 85QPCh. 9 - Prob. 86QPCh. 9 - Prob. 87QPCh. 9 - Prob. 88QPCh. 9 - Prob. 89QPCh. 9 - Prob. 90QPCh. 9 - Prob. 91QPCh. 9 - Prob. 92QPCh. 9 - Prob. 93QPCh. 9 - Prob. 94QPCh. 9 - Prob. 95QPCh. 9 - Prob. 96QPCh. 9 - Prob. 97QPCh. 9 - Prob. 98QPCh. 9 - Prob. 99QPCh. 9 - Prob. 100QPCh. 9 - Prob. 101QPCh. 9 - Prob. 102QPCh. 9 - Prob. 103QPCh. 9 - Prob. 104QPCh. 9 - Prob. 105QPCh. 9 - Prob. 106QPCh. 9 - Prob. 107QPCh. 9 - Prob. 108QPCh. 9 - Prob. 109QPCh. 9 - Prob. 110QPCh. 9 - Prob. 111QPCh. 9 - Prob. 112QPCh. 9 - Prob. 113QPCh. 9 - Prob. 114QPCh. 9 - Prob. 115QPCh. 9 - Prob. 116QPCh. 9 - Prob. 117QPCh. 9 - Prob. 118QPCh. 9 - Prob. 119QPCh. 9 - Prob. 120QPCh. 9 - Prob. 121QPCh. 9 - Prob. 122QPCh. 9 - Prob. 123QPCh. 9 - Prob. 124QPCh. 9 - Prob. 125QPCh. 9 - Prob. 126QPCh. 9 - Prob. 127QPCh. 9 - Prob. 128QPCh. 9 - Prob. 129QPCh. 9 - Prob. 130QPCh. 9 - Prob. 131QPCh. 9 - Prob. 132QPCh. 9 - Prob. 133QPCh. 9 - Prob. 134QPCh. 9 - Prob. 135QPCh. 9 - Prob. 136QPCh. 9 - Prob. 137QPCh. 9 - Prob. 138QPCh. 9 - Prob. 139QPCh. 9 - Prob. 140QPCh. 9 - Prob. 141QPCh. 9 - Prob. 142QPCh. 9 - Prob. 143QPCh. 9 - Prob. 144QPCh. 9 - Prob. 145QPCh. 9 - Prob. 146QPCh. 9 - Prob. 147QPCh. 9 - Prob. 148QPCh. 9 - Prob. 149QPCh. 9 - Prob. 150QPCh. 9 - Prob. 151QPCh. 9 - Prob. 152QPCh. 9 - Prob. 153QPCh. 9 - Prob. 154QPCh. 9 - Prob. 155QPCh. 9 - Prob. 156QPCh. 9 - Prob. 157QPCh. 9 - Prob. 158QPCh. 9 - Prob. 159QPCh. 9 - Prob. 160QPCh. 9 - Prob. 161QPCh. 9 - Prob. 162QPCh. 9 - Prob. 163QPCh. 9 - Prob. 164QPCh. 9 - Prob. 165QPCh. 9 - Butane burns with oxygen according to the...Ch. 9 - Prob. 167QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The Mount Pinatubo volcano eruption in 1991 released an estimated 1.82 x 1013g of SO2 into the atmosphere. If the gas had an average temperature of -17.0 C and filled the troposphere, whose approximate volume is 8 x 1021L, what is the approximate partial pressure of SO2 caused by the eruption?arrow_forwardA sample of a smoke stack emission was collected into a 1.25-L tank at 752 mm Hg and analyzed. The analysis showed 92% CO2, 3.6% NO, 1.2% SO2, and 4.1% H2O by mass. What is the partial pressure exerted by each gas?arrow_forwardIf the rms speed of He atoms in the exosphere (highest region of the atmosphere) is 3.53 103 m/s, what is the temperature (in kelvins)?arrow_forward
- A prevailing pressure of one standard atmosphere will support a column of mercury 760 mm in height. Liquid gallium has a density of 6.20 g/mL. The height of a column of liquid gallium that one standard atmosphere can support is mm. The density of liquid mercury is 13.6 g/mLarrow_forwardA gas-filled balloon with a volume of 12.5 L at 0.90 atm and 21°C is allowed to rise to the stratosphere where the temperature is –5°C and the pressure is 0.001 bar. What is the final volume of the balloon in Liters? (1.000 atm = 1.013 bar)arrow_forwardIn which sphere ozone layer depletion is found and what conditions are created by ozone depletion?arrow_forward
- A helium-filled weather balloon has a volume of 729 L at 16.9°C and 755 mmHg. It is released and rises to an altitude of 5.53 km, where the pressure is 454 mmHg and the temperature is –16.1°C. The volume of the balloon at this altitude is L.arrow_forwardA weather balloon is inflated to a volume of 28.5 L at a pressure of 748 mmHg and a temperature of 28.0 °C. The balloon rises in the atmosphere to an altitude of approximately 25,000 ft, where the pressure is 385 mmHg and the temperature is -15.0 °C. Assuming the balloon can freely expand, calculate the volume of the balloon at this altitude.arrow_forwardA prevailing pressure of one standard atmosphere will support a column of mercury 760 mm in height. Liquid methylene iodide has a density of 3.33 g/mL. The height of a column of methylene iodide that one standard atmosphere can support is mm. The density of liquid mercury is 13.6 g/mL.arrow_forward
- Please send me the question in 20 minutes it's very urgent plzarrow_forwardA weather balloon is inflated with helium to a volume of 775.0 L at sea level, where the temperature is 30.0 °C and the barometric pressure is 760.0 torr. The balloon rises to an altitude of 4500.0 feet where the pressure is 645.0 torr and the temperature is 6.0 °C. What is the change in volume (in liters) of the balloon in going from sea level to 4500.0 feet?arrow_forwardA weather balloon is launched and attains a height of 120,000 feet before bursting. At the moment that the balloon burst, the atmospheric pressure was 125 torr and the volume of the balloon was 128 L. What was the original volume of the balloon on the ground before launching, where the pressure was 755 torr? (Assume constant T.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY