Concept explainers
(a)
Interpretation:
The change in the gas when the valve is open needs to be explained. Also, the changed value needs to be calculated.
Concept Introduction : The ideal gas equation is represented as follows:
Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.
(b)
Interpretation:
The value of
Concept Introduction :
The relation between
And,
And,
Here,
q is heat, w is work done, n is number of moles, Cp is heat capacity at constant pressure,
(c)
Interpretation:
The driving force for the process needs to be calculated.
Concept Introduction :
The relation between
And,
And,
Here,
q is heat, w is work done, n is number of moles, Cp is heat capacity at constant pressure,
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Chemical Principles
- For each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forwardThere are millions of organic compounds known, and new ones are being discovered or made at a rate of morethan 100,000 compounds per year. Organic compoundsburn readily in air at high temperatures to form carbondioxide and water. Several classes of organic compoundsare listed, with a simple example of each. Write a balanced chemical equation for the combustion in O2ofeach of these compounds, and then use the data inAppendix J to show that each reaction is product-favoredat room temperature. From these results, it is reasonable to hypothesize thatallorganic compounds are thermodynamically unstable inan oxygen atmosphere (that is, their room-temperaturereaction with O2(g) to form CO2(g) and H2O() isproduct-favored). If this hypothesis is true, how canorganic compounds exist on Earth?arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forward
- For the reaction BaCO3(s) BaO(s) + CO2(g), rG = +219.7 kJ/mol-rxn. Using this value and other data available in Appendix L, calculate the value of fG for BaCO3(s).arrow_forwardWhat are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forwardWhen 1.000 g of gaseous butane, C4H10, is burned at 25C and 1.00 atm pressure, H2O(l) and CO2(g) are formed with the evolution of 49.50 kJ of heat. a Calculate the molar enthalpy of formation of butane. (Use enthalpy of formation data for H2O and CO2.) b Gf of butane is 17.2 kJ/mol. What is G for the combustion of 1 mol butane? c From a and b, calculate S for the combustion of 1 mol butane.arrow_forward
- The combustion of methane can be represented as follows: a. Use the information given above to determine the value of H for the combustion of methane to form CO2(g) and 2H2O(l). b. What is Hf for an element in its standard state? Why is this? Use the figure above to support your answer. c. How does H for the reaction CO2(g) + 2H2O (1) CH4(g) + O2(g) compare to that of the combustion of methane? Why is this?arrow_forwardWhen 1.000 g of ethylene glycol, C2H6O2, is burned at 25C and 1.00 atmosphere pressure, H2O(l) and CO2(g) are formed with the evolution of 19.18 kJ of heat. a Calculate the molar enthalpy of formation of ethylene glycol. (It will be necessary to use data from Appendix C.) b Gf of ethylene glycol is 322.5 kJ/mol. What is G for the combustion of 1 mol ethylene glycol? c What is S for the combustion of 1 mol ethylene glycol?arrow_forwardWhen calculating rSfromSvalues, it is necessary to look up all substances, including elements in their standard state, such as O2(g), H2(g), and N2(g). When calculating rHfrom rHvalues, however, elements in theirstandard state can be ignored. Why is the situation different forSvalues?arrow_forward
- 2. In which of the following reactions is there a significant transfer of energy as work from the system to the surroundings? This occurs if there is a change in the number of moles of gases. C(s) + O2(g) → CO2(g) CH4(g) + 2 O2(g) → CO2g) + 2 H2O(g) 2 C(s) + O2(g) → 2 CO(g) 2 Mg(s) + O2(g) → 2 MgO(s)arrow_forwardThe decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forwardFor each process, tell whether the entropy change of the system is positive or negative. (a) A glassblower heats glass (the system) to its softening temperature. (b) A teaspoon of sugar dissolves in a cup of coffee. (The system consists of both sugar and coffee.) (c) Calcium carbonate precipitates out of water in a cave to form stalactites and stalagmites. (Consider only the calcium carbonate to be the system.)arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning