Concept explainers
(a)
The speed of the ball just after impact.
(a)
Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Formula used:
Applying impulse-momentum theorem to the ball,
Where
Calculation:
FIGURE:
Substituting numerical values in equation
Conclusion:
The speed of the ball just after impact is
(b)
The angular speed of the ball after impact.
(b)
Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Formula used:
Applying Newton’s second law in rotational form to ball,
Where,
Moment of inertia with respect to an axis through the center of mass of the ball is
Substituting this in equation
From equation
Substituting the expression for
Calculation:
FIGURE: 2
Substituting the numerical values in equation
Conclusion:
The angular speed of the ball after impact is
(c)
The speed of the ball when it begins to roll without slipping.
(c)
Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Coefficient of kinetic friction,
Formula used:
Constant acceleration equation that relates the speed of the ball to the acceleration and time,
Where,
Referring to the force diagram shown in figure 3, applying Newton’s second law to the ball,
And
Where,
But,
Where,
From equation
Substituting this in equation
Substituting the expression for
Substituting
From equation
Substituting for
Now let us write constant-acceleration equation that connects angular speed of the ball to the angular acceleration and time,
When the ball rolls without slipping
From equation
Hence,
Now equating the expressions
On rearranging,
Calculation:
FIGURE:3
Substituting the numerical values in equation
Substituting the numerical values in equation
Conclusion:
The speed of the ball when it begins to roll without slipping is
(d)
The distance travelled by the ball along the surface before it begins to roll without slipping.
(d)
Answer to Problem 104P
Explanation of Solution
Given: Coefficient of kinetic friction,
Formula used:
The distance travelled by the ball in time
Since,
Where,
Calculation:
FIGURE: 4
From the part
Substituting the numerical values in equation
Conclusion:
The distance travelled by the ball along the surface before it begins to roll without slipping is
Want to see more full solutions like this?
Chapter 9 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- What is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forward
- Show that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College