![EBK PHYSICS FOR SCIENTISTS AND ENGINEER](https://www.bartleby.com/isbn_cover_images/9781319321710/9781319321710_largeCoverImage.gif)
Concept explainers
(a)
The distance moved by the ball
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 101P
Explanation of Solution
Given: Mass of the ball is
Radius of the ball is
The coefficient of kinetic friction between the ball and the floor is
At the instant the ball touches the floor it is moving horizontally with a speed
Formula used:
Velocity
Equation of kinematics
Where,
Calculation:
FIGURE:
In the figure
N is the normal reaction force which is acting in the upward direction through the point of contact.
Velocity
In this problem there arise a force of kinetic friction,
This acceleration is in the direction opposite to the direction of motion of the ball and hence equation
The horizontal force
Where,
Thus, the equation
Angular acceleration,
This angular acceleration sets the ball rotating with angular velocity
When the ball starts rolling, the velocity
is satisfied.
Substituting equation
Substituting for
Substituting the expression for
Substituting the value of
The distance moved by the ball
Using the equation
Substituting the expressions for
Conclusion:
The distance moved by the ball before it begin to roll without slipping is
Time taken by the ball to cover the distance
The final speed of the ball is
(b)
The ratio of the final kinetic energy to the initial kinetic energy of the ball.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 101P
Explanation of Solution
Given: Mass of the ball is
Radius of the ball is
The coefficient of kinetic friction between the ball and the floor is
At the instant the ball touches the floor it is moving horizontally with a speed
Final velocity of the ball is
Formula used:
The final kinetic energy of the ball is given by,
Where,
Initial kinetic energy of the ball is given by,
Calculation:
Moment of inertia of the ball is given by,
For rotational motion of the ball the velocity,
Substituting for
But,
Therefore final kinetic energy of the ball is,
From equations
Conclusion:
The ratio of the final kinetic energy to the initial kinetic energy of the ball is
(c)
The values of
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 101P
Explanation of Solution
Given:
Formula used:
Calculation:
Substituting the numerical values in equation
Substituting the numerical values in equation
Substituting the numerical values in equation
Conclusion:
The values of
Want to see more full solutions like this?
Chapter 9 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 3.9 moles of an ideal gas are sealed in a container with volume 0.22 m3, at a pressure of 146,000 N/m2. What is the temperature of the gas in degrees Celsius?arrow_forwardwhen a cannon is launched at a 65 degree angle, will it have the same horizontal velocity as when it is launched from a 25 degree angle as long as the initial speed is the same?arrow_forwardPlease solve the problem step by step and provide explanations along each step stating what's being done. Thank you!!arrow_forward
- Figure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, 0, y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forwardDraw a phase portrait for an oscillating, damped spring.arrow_forward
- A person is running a temperature of 41.0°C. What is the equivalent temperature on the Fahrenheit scale? (Enter your answer to at least three significant figures.) °Farrow_forwardWhat is the period of a rock of mass 2.0kg tied to the end of a spring 0.625m long string that hangs in a doorway and has an elastic constant of 40N/m?arrow_forwardGive an example of friction speeding up an object.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)