As the bead engineer of your starship in charge of the warp drive, you notice that the supply of dilithium is critically low. While searching for a replacement fuel, you discover some diboron, B 2 . a. What is the bond order in Li 2 and B 2 ? b. How many electrons must be removed from B 2 to make it isoelectronic with Li 2 so that it might be used in the warp drive? c. The reaction to make B 2 isoelectroruc with Li 2 is generalized (where n = number of electrons determined in part b) as follows: B 2 → B 2 n + + n e − Δ E = 6455 k J / m o l How much energy is needed to ionize 1.5 kg B 2 to lhe desired isoelectroruc species?
As the bead engineer of your starship in charge of the warp drive, you notice that the supply of dilithium is critically low. While searching for a replacement fuel, you discover some diboron, B 2 . a. What is the bond order in Li 2 and B 2 ? b. How many electrons must be removed from B 2 to make it isoelectronic with Li 2 so that it might be used in the warp drive? c. The reaction to make B 2 isoelectroruc with Li 2 is generalized (where n = number of electrons determined in part b) as follows: B 2 → B 2 n + + n e − Δ E = 6455 k J / m o l How much energy is needed to ionize 1.5 kg B 2 to lhe desired isoelectroruc species?
Solution Summary: The author explains how the electronic configuration for multi-electron diatomic molecule is written using the molecular orbitals.
As the bead engineer of your starship in charge of the warp drive, you notice that the supply of dilithium is critically low. While searching for a replacement fuel, you discover some diboron, B2.
a. What is the bond order in Li2 and B2?
b. How many electrons must be removed from B2 to make it isoelectronic with Li2 so that it might be used in the warp drive?
c. The reaction to make B2 isoelectroruc with Li2 is generalized (where n = number of electrons determined in part b) as follows:
B
2
→
B
2
n
+
+
n
e
−
Δ
E
=
6455
k
J
/
m
o
l
How much energy is needed to ionize 1.5 kg B2 to lhe desired isoelectroruc species?
(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception tothe general ionization energy (IE) trend. For the two elements involved, answer the followingquestions. Be sure to cite sources for all physical data that you use.a. (2 pts) Identify the two elements and write their electronic configurations.b. (2 pts) Based on their configurations, propose a reason for the IE trend exception.c. (5 pts) Calculate effective nuclear charges for the last electron in each element and theAllred-Rochow electronegativity values for the two elements. Can any of these valuesexplain the IE trend exception? Explain how (not) – include a description of how IErelates to electronegativity.
Don't used hand raiting and don't used Ai solution
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell