![EBK USING AND UNDERSTANDING MATHEMATICS](https://www.bartleby.com/isbn_cover_images/8220100802713/8220100802713_largeCoverImage.jpg)
EBK USING AND UNDERSTANDING MATHEMATICS
6th Edition
ISBN: 8220100802713
Author: Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.A, Problem 26E
Bacteria in a Bottle Parable. Use the bacteria parable presented in the text.
23. How many bacteria are in the bottle at 11:50? What traction of the bottle is full at that time?
- How many bacteria are in the bottle at 11:15? What traction of the bottle is full at that time?
- Knee-Deep in Bacteria. The total surface area of Earth is about 3.1 X 1014 m2 Assume that the bacteria continued their doublings for a total of two hours (as discussed in the text), at which point they were distributed uniformly over Earth's surface. How deep would the bacterial layer be? Would it be knee-deep, mote than knee-deep, or less than knee-deep? (Hint: You can find the approximate depth by dividing the bacteria volume by (Earth's surface area.)
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A retail chain is interested in determining whether a digital video point-of-purchase (POP) display would stimulate higher sales for a brand advertised compared to the standard cardboard point-of-purchase display. To test this, a one-shot static group design experiment was conducted over a four-week period in 100 different stores. Fifty stores were randomly assigned to the control treatment (standard display) and the other 50 stores were randomly assigned to the experimental treatment (digital display). Compare the sales of the control group (standard POP) to the experimental group (digital POP).
What were the average sales for the standard POP display (control group)?
What were the sales for the digital display (experimental group)?
What is the (mean) difference in sales between the experimental group and control group?
List the null hypothesis being tested.
Do you reject or retain the null hypothesis based on the results of the independent t-test?
Was the difference between the…
Using fixed point iteration and Newton Raphson methods to solve the
following function:
f(x) = e−0.5x(4-x)-2. Take xo-2 and n=5.
Use the information to find and compare Δy and dy. (Round your answers to four decimal places.)
y = x4 + 7 x = −3 Δx = dx = 0.01
Δy =
dy =
Chapter 8 Solutions
EBK USING AND UNDERSTANDING MATHEMATICS
Ch. 8.A - Prob. 1QQCh. 8.A - Prob. 2QQCh. 8.A - The balance owed your credit card doubles from...Ch. 8.A - The number Of songs in your iPod has increased...Ch. 8.A - Which of the following is in example of...Ch. 8.A - On a chessboard with 64 squares, you place 1 penny...Ch. 8.A - At 11:00 you place a single bacterium in a bottle,...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Which of the following is not true of any...
Ch. 8.A - Describe basic differences between linear growth...Ch. 8.A - 2. Briefly explain how repeated doublings...Ch. 8.A - Briefly summarize the Story Of the bacteria in the...Ch. 8.A - Explain the meaning Of the two key facts about...Ch. 8.A - Prob. 5ECh. 8.A - Suppose you had a magic hank account in which your...Ch. 8.A - A small town that grows exponentially can become a...Ch. 8.A - H. Human population has been growing exponentially...Ch. 8.A - Prob. 9ECh. 8.A - Prob. 10ECh. 8.A - Prob. 11ECh. 8.A - Prob. 12ECh. 8.A - Prob. 13ECh. 8.A - Prob. 14ECh. 8.A - Linear or Exponential? State whether the growth...Ch. 8.A - Prob. 16ECh. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Prob. 20ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Prob. 22ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - 29. Human Doubling. Human population in the year...Ch. 8.A - Doubling Time versus Initial Amount. a. Would you...Ch. 8.A - Facebook Users. The table shows the number of...Ch. 8.A - Prob. 32ECh. 8.A - Exponential Growth. Identify at least two news...Ch. 8.A - Prob. 34ECh. 8.A - Prob. 35ECh. 8.B - Prob. 1QQCh. 8.B - Prob. 2QQCh. 8.B - Which of the following is not a good approximation...Ch. 8.B - Prob. 4QQCh. 8.B - Radioactive tritium (hvdrogen-3) has a halt-life...Ch. 8.B - Radioactive uramum-235 has a hall-life of about...Ch. 8.B - Prob. 7QQCh. 8.B - log10108= a.100,000,000 b. 108 c.8Ch. 8.B - A rural popular ion decreases at a rate of 20% per...Ch. 8.B - Prob. 10QQCh. 8.B - What is a doubling tune? Suppose a population has...Ch. 8.B - Prob. 2ECh. 8.B - State the approximate doubting time formula and...Ch. 8.B - Prob. 4ECh. 8.B - Prob. 5ECh. 8.B - 6. State the approximate hall-life formula and the...Ch. 8.B - 7. Briefly describe exact doubling time and...Ch. 8.B - 8. Give an example in which it is important to use...Ch. 8.B - Our town is growing with a doubling time of 25...Ch. 8.B - Our town is growing at a rate of 7% per year, so...Ch. 8.B - A toxic chemical decays with a hall-life of 10...Ch. 8.B - The hall-life of plutomum-239 is about 24,000...Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 15ECh. 8.B - Prob. 16ECh. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 18ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 22ECh. 8.B - Prob. 23ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 25ECh. 8.B - Prob. 26ECh. 8.B - Prob. 27ECh. 8.B - Prob. 28ECh. 8.B - Prob. 29ECh. 8.B - Prob. 30ECh. 8.B - Prob. 31ECh. 8.B - Prob. 32ECh. 8.B - Prob. 33ECh. 8.B - Prob. 34ECh. 8.B - 31. Rabbits. A community of rabbits begins with an...Ch. 8.B - Prob. 36ECh. 8.B - Doubling Time Formula. Use the approximate...Ch. 8.B - Prob. 38ECh. 8.B - Prob. 39ECh. 8.B - Prob. 40ECh. 8.B - Prob. 41ECh. 8.B - Prob. 42ECh. 8.B - Prob. 43ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 45ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 47ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 49ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 51ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 53ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 55ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 57ECh. 8.B - 58. Nuclear Weapons. Thermonuclear weapons use...Ch. 8.B - Fossil Fuel Emissions. Total emissions of carbon...Ch. 8.B - Yucca Mountain. The U.S. government spent nearly...Ch. 8.B - Crime Rate. The homicide rate decreases at a rate...Ch. 8.B - 62. Drug Metabolism. A particular antibiotic is...Ch. 8.B - Atmospheric Pressure. The pressure of Earth's...Ch. 8.B - Prob. 64ECh. 8.B - 65. Radioactive Half-Life. Find a news story that...Ch. 8.B - Prob. 66ECh. 8.B - Prob. 67ECh. 8.B - Prob. 68ECh. 8.B - Prob. 69ECh. 8.C - Prob. 1QQCh. 8.C - Prob. 2QQCh. 8.C - The primary reason for the rapid growth of human...Ch. 8.C - The carrying capacity of the Earth is defined as...Ch. 8.C - Which of the billowing would cause estimates of...Ch. 8.C - 6. Recall the bacteria in a bottle example from...Ch. 8.C - When researchers project that human population...Ch. 8.C - Prob. 8QQCh. 8.C - Prob. 9QQCh. 8.C - Prob. 10QQCh. 8.C - Based on Figure 8.3, contrast the changes in human...Ch. 8.C - Prob. 2ECh. 8.C - Haw do today’s birth and death rates compare to...Ch. 8.C - Prob. 4ECh. 8.C - Prob. 5ECh. 8.C - What is overshot and collapse? Under what...Ch. 8.C - Prob. 7ECh. 8.C - 8. If birth rates fall more than death rates, the...Ch. 8.C - The carrying capacity of our planet depends only...Ch. 8.C - to rapid increases in computing technology, we...Ch. 8.C - In the wild, we always expect the population of...Ch. 8.C - Prob. 12ECh. 8.C - Prob. 13ECh. 8.C - Varying Growth Rates. Starting from a 2013...Ch. 8.C - Prob. 15ECh. 8.C - 13-16: Varying Growth Rates. Starting from a 2013...Ch. 8.C - Birth and Death Rates. The following table gives...Ch. 8.C - Prob. 18ECh. 8.C - Prob. 19ECh. 8.C - Prob. 20ECh. 8.C - 21. Logistic Growth. Consider a population that...Ch. 8.C - Logistic Growth. Consider a population that begins...Ch. 8.C - Prob. 23ECh. 8.C - Prob. 24ECh. 8.C - Prob. 25ECh. 8.C - Prob. 26ECh. 8.C - Prob. 27ECh. 8.C - Prob. 28ECh. 8.C - Prob. 29ECh. 8.C - Prob. 30ECh. 8.C - Prob. 31ECh. 8.C - Prob. 32ECh. 8.C - Prob. 33ECh. 8.C - Prob. 34.0ECh. 8.C - Prob. 34.1ECh. 8.C - Population Predictions. Find population...Ch. 8.C - Prob. 36ECh. 8.C - Prob. 37ECh. 8.C - Prob. 38ECh. 8.C - Prob. 39ECh. 8.D - The energy release of a magnitude 7 earthquake is...Ch. 8.D - Prob. 2QQCh. 8.D - 3. What is a 0-decibel sound?
the softest sound...Ch. 8.D - Prob. 4QQCh. 8.D - Prob. 5QQCh. 8.D - Prob. 6QQCh. 8.D - Prob. 7QQCh. 8.D - Prob. 8QQCh. 8.D - Prob. 9QQCh. 8.D - Prob. 10QQCh. 8.D - What is the magnitude scale for earthquakes? What...Ch. 8.D - What is the decibel scale? Describe how it is...Ch. 8.D - What is pH? What pH values define an acid, a base,...Ch. 8.D - What is acid rain? Why is it a serious...Ch. 8.D - 5. An earthquake of magnitude 8 will do twice as...Ch. 8.D - A 120-dB wand is 20% louder than a 100-dB sound.Ch. 8.D - If I double the amount of water in the cup, I'll...Ch. 8.D - The lake water was crystal clear, so It could not...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Prob. 10ECh. 8.D - Prob. 11ECh. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - 9-14: Earthquake Magnitudes. Use the earthquake...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - Prob. 20ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Prob. 22ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - The pH scale. Use the pH scale to answer the...Ch. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - Prob. 27ECh. 8.D - Prob. 28ECh. 8.D - Prob. 29ECh. 8.D - Prob. 30ECh. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - 25-32: The pH Scale. Use the pH scale to answer...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - 33-38: Logarithmic Thinking. Briefly describe, in...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Prob. 37ECh. 8.D - Prob. 38ECh. 8.D - 39. Sound and Distance.
The decibel level for...Ch. 8.D - 40. Variation in Sound with Distance. Suppose that...Ch. 8.D - Toxic Dumping in Acidified Lakes. Consider a...Ch. 8.D - Earthquakes in the News. Find a recent news story...Ch. 8.D - Prob. 43ECh. 8.D - Disasters. Find the death lolls for some of the...Ch. 8.D - Prob. 45E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- What were the average sales for the four weeks prior to the experiment? What were the sales during the four weeks when the stores used the digital display? What is the mean difference in sales between the experimental and regular POP time periods? State the null hypothesis being tested by the paired sample t-test. Do you reject or retain the null hypothesis? At a 95% significance level, was the difference significant? Explain why or why not using the results from the paired sample t-test. Should the manager of the retail chain install new digital displays in each store? Justify your answer.arrow_forwardSolve the following Probability Problem (solve all parts) HW 2.x. (Headless Hunt)The Headless Hunt is an organization of 88 Hogwarts ghosts so elite thateven Nearly Headless Nick was annually denied admission for decades,despite being The Gryffindor ghost. The ghosts love playing sports anddecided to get together and have either a Head Polo tournament or aHorseback Head-Juggling tournament. However, even if they are ghosts,they still have jobs so some of them might have an urgent haunting as-signment. In order for no one to be left behind they need to be able tosplit into teams of equal numbers. Head polo teams consist of 4 playerswhereas Horseback Head-Juggling teams have 11 players. Assume thatany number of them from 1 to 88 show up with equal probability. a) What is the probability they will be able to play one of the twotournaments?b) If in addition to the previous 2 sports there was one more option, atournament in Headless bowling which is played in teams of 8 players,what would…arrow_forwardCan you evalutate the following summation:∑_{y=1}^{x} 2 / ((x + y - 1)(x + y + 1))arrow_forward
- A retail chain is interested in determining whether a digital video point-of-purchase (POP) display would stimulate higher sales for a brand advertised compared to the standard cardboard point-of-purchase display. To test this, a one-shot static group design experiment was conducted over a four-week period in 100 different stores. Fifty stores were randomly assigned to the control treatment (standard display) and the other 50 stores were randomly assigned to the experimental treatment (digital display). Compare the sales of the control group (standard POP) to the experimental group (digital POP). What were the average sales for the standard POP display (control group)? What were the sales for the digital display (experimental group)? What is the (mean) difference in sales between the experimental group and control group? List the null hypothesis being tested. Do you reject or retain the null hypothesis based on the results of the independent t-test? Was the difference between the…arrow_forwardCan you evaluate the following summation:∑_{k=1}^{n} (4log(n+k) + 4k)arrow_forwardQuestion 4 An article in Quality Progress (May 2011, pp. 42-48) describes the use of factorial experiments to improve a silver powder production process. This product is used in conductive pastes to manufacture a wide variety of products ranging from silicon wafers to elastic membrane switches. Powder density (g/cm²) and surface area (cm/g) are the two critical characteristics of this product. The experiments involved three factors: reaction temperature, ammonium percentage, stirring rate. Each of these factors had two levels, and the design was replicated twice. The design is shown in Table 3. A222222222222233 Stir Rate (RPM) Ammonium (%) Table 3: Silver Powder Experiment from Exercise 13.23 Temperature (°C) Density Surface Area 100 8 14.68 0.40 100 8 15.18 0.43 30 100 8 15.12 0.42 30 100 17.48 0.41 150 7.54 0.69 150 8 6.66 0.67 30 150 8 12.46 0.52 30 150 8 12.62 0.36 100 40 10.95 0.58 100 40 17.68 0.43 30 100 40 12.65 0.57 30 100 40 15.96 0.54 150 40 8.03 0.68 150 40 8.84 0.75 30 150…arrow_forward
- Given sets X and Y and Z, can you prove that (X-(Y u Z)) u (Y-(X u Z)) is a subset of (X u Y) - (X intersection Y)arrow_forward4. A car travels in a straight line for one hour. Its velocity, v, in miles per hour at six minute intervals is shown in the table. For each problem, approximate the distance the car traveled (in miles) using the given method, on the provided interval, and with the given number of rectangles or trapezoids, n. Time (min) 0 6 12 18|24|30|36|42|48|54|60 Speed (mph) 0 10 20 40 60 50 40 30 40 40 65 a.) Left Rectangles, [0, 30] n=5 b.) Right Rectangles, [24, 42] n=3 c.) Midpoint Rectangles, [24, 60] n=3 d.) Trapezoids, [0, 24] n=4arrow_forwardGiven the functions A and B, can you prove that if B ◦ A is bijective, then A is injective and B is surjectivearrow_forward
- - + ++ Table 2: Crack Experiment for Exercise 2 A B C D Treatment Combination (1) Replicate I II 7.037 6.376 14.707 15.219 |++++ 1 བྱ॰༤༠སྦྱོ སྦྱོཋཏྟཱུ a b ab 11.635 12.089 17.273 17.815 с ас 10.403 10.151 4.368 4.098 bc abc 9.360 9.253 13.440 12.923 d 8.561 8.951 ad 16.867 17.052 bd 13.876 13.658 abd 19.824 19.639 cd 11.846 12.337 acd 6.125 5.904 bcd 11.190 10.935 abcd 15.653 15.053 Question 3 Continuation of Exercise 2. One of the variables in the experiment described in Exercise 2, heat treatment method (C), is a categorical variable. Assume that the remaining factors are continuous. (a) Write two regression models for predicting crack length, one for each level of the heat treatment method variable. What differences, if any, do you notice in these two equations? (b) Generate appropriate response surface contour plots for the two regression models in part (a). (c) What set of conditions would you recommend for the factors A, B, and D if you use heat treatment method C = +? (d) Repeat…arrow_forwardTerry has a square plot of land measuring 500 meters by 500 meters. She divided the land into 25 100-m by 100-m plots and created three raster maps showing the type of mineral, fruit tree, and energy available on each plot. Use the maps below to shade the blank maps according to each problem.arrow_forwardThe bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N. F1 B a=0.18 m C A 0.4 m -0.4 m- 0.24 m Determine the reaction at C. The reaction at C N Z F2 Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780395977224/9780395977224_smallCoverImage.gif)
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY