
EBK USING AND UNDERSTANDING MATHEMATICS
6th Edition
ISBN: 8220100802713
Author: Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.D, Problem 8QQ
To determine
The Hydrogen ion concentration corresponding to value of .
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an
account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the
nearest dollar.
r
nt
Use the compound interest formula, A (t) = P(1 + 1)".
An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi-
annually. Round all answers to the nearest dollar.
a. What will the account be worth in 10 years? $
b. What if the interest were compounding monthly? $
c. What if the interest were compounded daily (assume 365 days in a year)? $
Chapter 8 Solutions
EBK USING AND UNDERSTANDING MATHEMATICS
Ch. 8.A - Prob. 1QQCh. 8.A - Prob. 2QQCh. 8.A - The balance owed your credit card doubles from...Ch. 8.A - The number Of songs in your iPod has increased...Ch. 8.A - Which of the following is in example of...Ch. 8.A - On a chessboard with 64 squares, you place 1 penny...Ch. 8.A - At 11:00 you place a single bacterium in a bottle,...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Which of the following is not true of any...
Ch. 8.A - Describe basic differences between linear growth...Ch. 8.A - 2. Briefly explain how repeated doublings...Ch. 8.A - Briefly summarize the Story Of the bacteria in the...Ch. 8.A - Explain the meaning Of the two key facts about...Ch. 8.A - Prob. 5ECh. 8.A - Suppose you had a magic hank account in which your...Ch. 8.A - A small town that grows exponentially can become a...Ch. 8.A - H. Human population has been growing exponentially...Ch. 8.A - Prob. 9ECh. 8.A - Prob. 10ECh. 8.A - Prob. 11ECh. 8.A - Prob. 12ECh. 8.A - Prob. 13ECh. 8.A - Prob. 14ECh. 8.A - Linear or Exponential? State whether the growth...Ch. 8.A - Prob. 16ECh. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Prob. 20ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Prob. 22ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - 29. Human Doubling. Human population in the year...Ch. 8.A - Doubling Time versus Initial Amount. a. Would you...Ch. 8.A - Facebook Users. The table shows the number of...Ch. 8.A - Prob. 32ECh. 8.A - Exponential Growth. Identify at least two news...Ch. 8.A - Prob. 34ECh. 8.A - Prob. 35ECh. 8.B - Prob. 1QQCh. 8.B - Prob. 2QQCh. 8.B - Which of the following is not a good approximation...Ch. 8.B - Prob. 4QQCh. 8.B - Radioactive tritium (hvdrogen-3) has a halt-life...Ch. 8.B - Radioactive uramum-235 has a hall-life of about...Ch. 8.B - Prob. 7QQCh. 8.B - log10108= a.100,000,000 b. 108 c.8Ch. 8.B - A rural popular ion decreases at a rate of 20% per...Ch. 8.B - Prob. 10QQCh. 8.B - What is a doubling tune? Suppose a population has...Ch. 8.B - Prob. 2ECh. 8.B - State the approximate doubting time formula and...Ch. 8.B - Prob. 4ECh. 8.B - Prob. 5ECh. 8.B - 6. State the approximate hall-life formula and the...Ch. 8.B - 7. Briefly describe exact doubling time and...Ch. 8.B - 8. Give an example in which it is important to use...Ch. 8.B - Our town is growing with a doubling time of 25...Ch. 8.B - Our town is growing at a rate of 7% per year, so...Ch. 8.B - A toxic chemical decays with a hall-life of 10...Ch. 8.B - The hall-life of plutomum-239 is about 24,000...Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 15ECh. 8.B - Prob. 16ECh. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 18ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 22ECh. 8.B - Prob. 23ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 25ECh. 8.B - Prob. 26ECh. 8.B - Prob. 27ECh. 8.B - Prob. 28ECh. 8.B - Prob. 29ECh. 8.B - Prob. 30ECh. 8.B - Prob. 31ECh. 8.B - Prob. 32ECh. 8.B - Prob. 33ECh. 8.B - Prob. 34ECh. 8.B - 31. Rabbits. A community of rabbits begins with an...Ch. 8.B - Prob. 36ECh. 8.B - Doubling Time Formula. Use the approximate...Ch. 8.B - Prob. 38ECh. 8.B - Prob. 39ECh. 8.B - Prob. 40ECh. 8.B - Prob. 41ECh. 8.B - Prob. 42ECh. 8.B - Prob. 43ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 45ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 47ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 49ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 51ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 53ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 55ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 57ECh. 8.B - 58. Nuclear Weapons. Thermonuclear weapons use...Ch. 8.B - Fossil Fuel Emissions. Total emissions of carbon...Ch. 8.B - Yucca Mountain. The U.S. government spent nearly...Ch. 8.B - Crime Rate. The homicide rate decreases at a rate...Ch. 8.B - 62. Drug Metabolism. A particular antibiotic is...Ch. 8.B - Atmospheric Pressure. The pressure of Earth's...Ch. 8.B - Prob. 64ECh. 8.B - 65. Radioactive Half-Life. Find a news story that...Ch. 8.B - Prob. 66ECh. 8.B - Prob. 67ECh. 8.B - Prob. 68ECh. 8.B - Prob. 69ECh. 8.C - Prob. 1QQCh. 8.C - Prob. 2QQCh. 8.C - The primary reason for the rapid growth of human...Ch. 8.C - The carrying capacity of the Earth is defined as...Ch. 8.C - Which of the billowing would cause estimates of...Ch. 8.C - 6. Recall the bacteria in a bottle example from...Ch. 8.C - When researchers project that human population...Ch. 8.C - Prob. 8QQCh. 8.C - Prob. 9QQCh. 8.C - Prob. 10QQCh. 8.C - Based on Figure 8.3, contrast the changes in human...Ch. 8.C - Prob. 2ECh. 8.C - Haw do today’s birth and death rates compare to...Ch. 8.C - Prob. 4ECh. 8.C - Prob. 5ECh. 8.C - What is overshot and collapse? Under what...Ch. 8.C - Prob. 7ECh. 8.C - 8. If birth rates fall more than death rates, the...Ch. 8.C - The carrying capacity of our planet depends only...Ch. 8.C - to rapid increases in computing technology, we...Ch. 8.C - In the wild, we always expect the population of...Ch. 8.C - Prob. 12ECh. 8.C - Prob. 13ECh. 8.C - Varying Growth Rates. Starting from a 2013...Ch. 8.C - Prob. 15ECh. 8.C - 13-16: Varying Growth Rates. Starting from a 2013...Ch. 8.C - Birth and Death Rates. The following table gives...Ch. 8.C - Prob. 18ECh. 8.C - Prob. 19ECh. 8.C - Prob. 20ECh. 8.C - 21. Logistic Growth. Consider a population that...Ch. 8.C - Logistic Growth. Consider a population that begins...Ch. 8.C - Prob. 23ECh. 8.C - Prob. 24ECh. 8.C - Prob. 25ECh. 8.C - Prob. 26ECh. 8.C - Prob. 27ECh. 8.C - Prob. 28ECh. 8.C - Prob. 29ECh. 8.C - Prob. 30ECh. 8.C - Prob. 31ECh. 8.C - Prob. 32ECh. 8.C - Prob. 33ECh. 8.C - Prob. 34.0ECh. 8.C - Prob. 34.1ECh. 8.C - Population Predictions. Find population...Ch. 8.C - Prob. 36ECh. 8.C - Prob. 37ECh. 8.C - Prob. 38ECh. 8.C - Prob. 39ECh. 8.D - The energy release of a magnitude 7 earthquake is...Ch. 8.D - Prob. 2QQCh. 8.D - 3. What is a 0-decibel sound?
the softest sound...Ch. 8.D - Prob. 4QQCh. 8.D - Prob. 5QQCh. 8.D - Prob. 6QQCh. 8.D - Prob. 7QQCh. 8.D - Prob. 8QQCh. 8.D - Prob. 9QQCh. 8.D - Prob. 10QQCh. 8.D - What is the magnitude scale for earthquakes? What...Ch. 8.D - What is the decibel scale? Describe how it is...Ch. 8.D - What is pH? What pH values define an acid, a base,...Ch. 8.D - What is acid rain? Why is it a serious...Ch. 8.D - 5. An earthquake of magnitude 8 will do twice as...Ch. 8.D - A 120-dB wand is 20% louder than a 100-dB sound.Ch. 8.D - If I double the amount of water in the cup, I'll...Ch. 8.D - The lake water was crystal clear, so It could not...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Prob. 10ECh. 8.D - Prob. 11ECh. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - 9-14: Earthquake Magnitudes. Use the earthquake...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - Prob. 20ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Prob. 22ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - The pH scale. Use the pH scale to answer the...Ch. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - Prob. 27ECh. 8.D - Prob. 28ECh. 8.D - Prob. 29ECh. 8.D - Prob. 30ECh. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - 25-32: The pH Scale. Use the pH scale to answer...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - 33-38: Logarithmic Thinking. Briefly describe, in...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Prob. 37ECh. 8.D - Prob. 38ECh. 8.D - 39. Sound and Distance.
The decibel level for...Ch. 8.D - 40. Variation in Sound with Distance. Suppose that...Ch. 8.D - Toxic Dumping in Acidified Lakes. Consider a...Ch. 8.D - Earthquakes in the News. Find a recent news story...Ch. 8.D - Prob. 43ECh. 8.D - Disasters. Find the death lolls for some of the...Ch. 8.D - Prob. 45E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Kyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forward
- The following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward
- how to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward. The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forward
- Let D be a directed graph, with loops allowed, for which the indegree at each vertex is at most k and the outdegree at each vertex is at most k. Prove that the arcs of D can be colored so that the arcs entering each vertex must have distinct colors and the arcs leaving each vertex have distinct colors. An arc entering a vertex may have the same color as an arc leaving it. It is probably easiest to make use of a known result about edge coloring. Think about splitting each vertex into an ‘in’ and ‘out’ part and consider what type of graph you get.arrow_forward3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forwardplease work out more details give the solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License