i.
To find: To find the equation that represents the
The equation that represents the circle and Oak Lane are
Given information: The radius of the circle is 1 mile and the origin are at
Calculation:
The radius of the circle is 1 mile.
The parking pass is given by,
The coordinates of Oak Lane are
Using the formula,
Substitute the coordinate value
Substitute the coordinate value
Put
Hence,
Conclusion:
The equation for the circle and Oak Lane is
ii.
To find: To solve the circle and Oak Lane equations.
The plots of the line are from
Given information: The equation that represents the circle and Oak Lane are
Calculation:
The equation that represents the circle and Oak Lane are
Now substituting the values of
Conclusion:
The plots of the line are from
iii.
To find: To find the length of the Oak Lane for the students who are not eligible for the parking pass.
The length of the Oak Lane for the students who are not eligible for the parking pass is
Given information: Non eligible students for the parking pass intersect with the circle at a radius of 1.
Calculation:
The distance between the two points is given by,
Conclusion:
The length of the Oak Lane for the students who are not eligible for the parking pass is
Chapter 8 Solutions
Algebra 2: New York Edition (holt Mcdougal Larson Algebra 2)
- The only problems I need help with ae the last 8 ones, Thanksarrow_forwardGraph without using the calculator y-1 = | x+4 |arrow_forward9:43 AS く Akbar © Printed in the United States 15) Scale: 1 cmal unit on both axes .ill 64% The graph above shows a straight line QT intersecting the y-axis at T. i State the co-ordinates of T. ii Calculate the gradient of QT 16) iii Determine the equation of QT. A (-1, 9) ||| i L Г (5 marks)arrow_forward
- Pls help.arrow_forwardSolve the system of equation for y using Cramer's rule. Hint: The determinant of the coefficient matrix is -23. - 5x + y − z = −7 2x-y-2z = 6 3x+2z-7arrow_forwarderic pez Xte in z= Therefore, we have (x, y, z)=(3.0000, 83.6.1 Exercise Gauss-Seidel iteration with Start with (x, y, z) = (0, 0, 0). Use the convergent Jacobi i Tol=10 to solve the following systems: 1. 5x-y+z = 10 2x-8y-z=11 -x+y+4z=3 iteration (x Assi 2 Assi 3. 4. x-5y-z=-8 4x-y- z=13 2x - y-6z=-2 4x y + z = 7 4x-8y + z = -21 -2x+ y +5z = 15 4x + y - z=13 2x - y-6z=-2 x-5y- z=-8 realme Shot on realme C30 2025.01.31 22:35 farrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education