Practical Management Science
5th Edition
ISBN: 9781305734845
Author: WINSTON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.5, Problem 7P
Summary Introduction
To determine: The happenings to the optimal solution for the given situation.
Introduction: The variation between the present value of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A baseball team plays in a stadium that holds 48000 spectators. With the ticket price at $8 the
average attendance has been 21000. When the price dropped to $7, the average attendance rose to
24000. Assume that attendance is linearly related to ticket price.
What ticket price would maximize revenue? s
!
Martin owns an older home, which requires
minor renovations. However, the neighborhood
where Martin lives mostly includes newly
constructed luxury homes. Why might Martin's
home increase in value?
Based on the principle of substitution, the
value of Martin's house will equal the value
of the newly
constructed homes in the neighborhood.
○ The value of Martin's home will decrease
due to the new competition in the
neighborhood.
Based on the principle of regression, the
newly constructed homes in the
neighborhood will increase
the home values of the entire neighborhood.
Based on the principle of progression, the
newly constructed homes in the
neighborhood will increase the home values
of the entire neighborhood.
Chapter 8 Solutions
Practical Management Science
Ch. 8.3 - Prob. 1PCh. 8.3 - Prob. 2PCh. 8.4 - Prob. 3PCh. 8.4 - Prob. 4PCh. 8.4 - Prob. 5PCh. 8.5 - Prob. 6PCh. 8.5 - Prob. 7PCh. 8.5 - In the lawn mower production problem in Example...Ch. 8.6 - Prob. 9PCh. 8.6 - Prob. 10P
Ch. 8.6 - Prob. 11PCh. 8.6 - Prob. 12PCh. 8.7 - Prob. 13PCh. 8.7 - Prob. 14PCh. 8.8 - Prob. 15PCh. 8.9 - Prob. 17PCh. 8.9 - Prob. 18PCh. 8.10 - Prob. 20PCh. 8.10 - Prob. 21PCh. 8.10 - Prob. 22PCh. 8.10 - Prob. 23PCh. 8.10 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 46PCh. 8 - Prob. 1CCh. 8 - Prob. 2C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Six months before its annual convention, the American Medical Association must determine how many rooms to reserve. At this time, the AMA can reserve rooms at a cost of 150 per room. The AMA believes the number of doctors attending the convention will be normally distributed with a mean of 5000 and a standard deviation of 1000. If the number of people attending the convention exceeds the number of rooms reserved, extra rooms must be reserved at a cost of 250 per room. a. Use simulation with @RISK to determine the number of rooms that should be reserved to minimize the expected cost to the AMA. Try possible values from 4100 to 4900 in increments of 100. b. Redo part a for the case where the number attending has a triangular distribution with minimum value 2000, maximum value 7000, and most likely value 5000. Does this change the substantive results from part a?arrow_forwardThe IRR is the discount rate r that makes a project have an NPV of 0. You can find IRR in Excel with the built-in IRR function, using the syntax =IRR(range of cash flows). However, it can be tricky. In fact, if the IRR is not near 10%, this function might not find an answer, and you would get an error message. Then you must try the syntax =IRR(range of cash flows, guess), where guess" is your best guess for the IRR. It is best to try a range of guesses (say, 90% to 100%). Find the IRR of the project described in Problem 34. 34. Consider a project with the following cash flows: year 1, 400; year 2, 200; year 3, 600; year 4, 900; year 5, 1000; year 6, 250; year 7, 230. Assume a discount rate of 15% per year. a. Find the projects NPV if cash flows occur at the ends of the respective years. b. Find the projects NPV if cash flows occur at the beginnings of the respective years. c. Find the projects NPV if cash flows occur at the middles of the respective years.arrow_forwardThe annual demand for Prizdol, a prescription drug manufactured and marketed by the NuFeel Company, is normally distributed with mean 50,000 and standard deviation 12,000. Assume that demand during each of the next 10 years is an independent random number from this distribution. NuFeel needs to determine how large a Prizdol plant to build to maximize its expected profit over the next 10 years. If the company builds a plant that can produce x units of Prizdol per year, it will cost 16 for each of these x units. NuFeel will produce only the amount demanded each year, and each unit of Prizdol produced will sell for 3.70. Each unit of Prizdol produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. a. Among the capacity levels of 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, and 60,000 units per year, which level maximizes expected profit? Use simulation to answer this question. b. Using the capacity from your answer to part a, NuFeel can be 95% certain that actual profit for the 10-year period will be between what two values?arrow_forward
- Assume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forwardRerun the new car simulation from Example 11.4, but now use the RISKSIMTABLE function appropriately to simulate discount rates of 5%, 7.5%, 10%, 12.5%, and 15%. Comment on how the outputs change as the discount rate decreases from the value used in the example, 10%.arrow_forwardA common decision is whether a company should buy equipment and produce a product in house or outsource production to another company. If sales volume is high enough, then by producing in house, the savings on unit costs will cover the fixed cost of the equipment. Suppose a company must make such a decision for a four-year time horizon, given the following data. Use simulation to estimate the probability that producing in house is better than outsourcing. If the company outsources production, it will have to purchase the product from the manufacturer for 25 per unit. This unit cost will remain constant for the next four years. The company will sell the product for 42 per unit. This price will remain constant for the next four years. If the company produces the product in house, it must buy a 500,000 machine that is depreciated on a straight-line basis over four years, and its cost of production will be 9 per unit. This unit cost will remain constant for the next four years. The demand in year 1 has a worst case of 10,000 units, a most likely case of 14,000 units, and a best case of 16,000 units. The average annual growth in demand for years 2-4 has a worst case of 7%, a most likely case of 15%, and a best case of 20%. Whatever this annual growth is, it will be the same in each of the years. The tax rate is 35%. Cash flows are discounted at 8% per year.arrow_forward
- Assume that all of a companys job applicants must take a test, and that the scores on this test are normally distributed. The selection ratio is the cutoff point used by the company in its hiring process. For example, a selection ratio of 25% means that the company will accept applicants for jobs who rank in the top 25% of all applicants. If the company chooses a selection ratio of 25%, the average test score of those selected will be 1.27 standard deviations above average. Use simulation to verify this fact, proceeding as follows. a. Show that if the company wants to accept only the top 25% of all applicants, it should accept applicants whose test scores are at least 0.674 standard deviation above average. (No simulation is required here. Just use the appropriate Excel normal function.) b. Now generate 1000 test scores from a normal distribution with mean 0 and standard deviation 1. The average test score of those selected is the average of the scores that are at least 0.674. To determine this, use Excels DAVERAGE function. To do so, put the heading Score in cell A3, generate the 1000 test scores in the range A4:A1003, and name the range A3:A1003 Data. In cells C3 and C4, enter the labels Score and 0.674. (The range C3:C4 is called the criterion range.) Then calculate the average of all applicants who will be hired by entering the formula =DAVERAGE(Data, "Score", C3:C4) in any cell. This average should be close to the theoretical average, 1.27. This formula works as follows. Excel finds all observations in the Data range that satisfy the criterion described in the range C3:C4 (Score0.674). Then it averages the values in the Score column (the second argument of DAVERAGE) corresponding to these entries. See online help for more about Excels database D functions. c. What information would the company need to determine an optimal selection ratio? How could it determine the optimal selection ratio?arrow_forwardA tire factory wants to set a minimum mileage guarantee on its tyre. Tyre tests reveals that the mean mileage has a normal distribution with mean 128 and standard deviation 1.76. the manufacturer wants to set the minimum guaranteed mileage so that no more than 2.5 percent of tyres will have to be replaced. The Lower limit of guaranteed mileage is :? (Write your answer in 2 decimals places)arrow_forwardApply Linear Programming to the Folling Question: Dan Reid, chief engineer at New Hampshire Chemical, Inc., has to decide whether to build a new state-of-art processing facility. If the new facility works, the company could realize a profit of $200,000. If it fails, New Hampshire Chemical could lose $150,000. At this time, Reid estimates a 60% chance that the new process will fail. The other option is to build a pilot plant and then decide whether to build a complete facility. The pilot plant would cost $10,000 to build. Reid estimates a fifty-fifty chance that the pilot plant will work. If the pilot plant works, there is a 90% probability that the complete plant, if it is built, will also work. If the pilot plant does not work, there is only a 20% chance that the complete project (if it is constructed) will work. Reid faces a dilemma. Should he build the plant? Should he build the pilot project and then make a decision? Help Reid by analyzing this problemarrow_forward
- Suppose that Pizza King and Noble Greek stopadvertising but must determine the price they will chargefor each pizza sold. Pizza King believes that Noble Greek’sprice is a random variable D having the following massfunction: P(D $6) .25, P(D $8) .50, P(D $10) .25. If Pizza King charges a price p1 and NobleGreek charges a price p2, Pizza King will sell 10025( p2 p1) pizzas. It costs Pizza King $4 to make a pizza.Pizza King is considering charging $5, $6, $7, $8, or $9 fora pizza. Use each decision criterion of this section todetermine the price that Pizza King should charge.arrow_forwardBilly's Bakery bakes fresh bagels each morning. The daily demand for bagels is a random variable with a distribution estimated from prior experience given by the following table, where X= Number of Bagels Sold in One Day: 10 15 20 25 30 35 Probability 0.05 0.10 | 0.10 0.20 0.25 0.15 0.10 | 0.05 The bagels cost Billy's 8 cents to make, and they are sold for 35 cents each. Bagels unsold at the end of the day are purchased by a nearby charity soup kitchen for 3 cents each. Based on the given discrete distribution, how many bagels should Billy's bake at the start of each day?arrow_forwardFormulate and then solve a linear programming model of this problem, to determine how manycontainers of each product to produce tomorrow to maximize profits. The company makes fourjuice products using orange, grapefruit, and pineapple juice.Product Retail Price per QuartOrange juice $1.00Grapefruit juice .90Pineapple juice .80All-in-One 1.10The All-in-One juice has equal parts of orange, grapefruit, and pineapple juice. Each product isproduced in a one-quart size (there are four quarts in a gallon). On hand are 400 gallons of orangejuice, 300 gallons of grapefruit juice, and 200 gallons of pineapple juice. The cost per gallon is$2.00 for orange juice, $1.60 for grapefruit juice, and $1.40 for pineapple juice.In addition, the manager wants grapefruit juice to be used for no more than 30 percent of thenumber of containers produced. She wants the ratio of the number of containers of orange juice tothe number of containers of pineapple juice to be at least 7 to 5.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,