
Concept explainers
A random sample of 10 items is drawn from a population whose standard deviation is unknown. The sample
- a. Construct an
interval estimate of μ with 95 percent confidence. - b. Repeat part a assuming that n = 20.
- c. Repeat part a assuming that n = 40.
- d. Describe how the confidence interval changes as n increases.
a.

Using the value of student’s t from Appendix D, construct a 95% confidence interval estimate for
Answer to Problem 21SE
The 95% confidence interval estimate for
Explanation of Solution
Calculation:
The given information is that a random sample of 10 items is drawn from a population whose standard deviation is unknown. The sample mean is 270 and sample standard deviation is 20.
Since, the population standard deviation is unknown; the sampling distribution is t-distribution.
Confidence interval:
The confidence interval estimate for
where
The degrees of freedom for the test is 9
Procedure the value of Student’s t using Appendix D:
- Go through the row corresponding to the degrees of freedom 9 in Appendix D of student’s t critical values.
- Go through the row corresponding to 9 and column corresponding to the confidence level 0.95.
- Obtain the value corresponding to (9, 0.95) from the table.
Thus, the value
Substitute
Thus, the 95% confidence interval estimate for
b.

Using the value of student’s t from Appendix D, construct a 95% confidence interval estimate for
Answer to Problem 21SE
The 95% confidence interval estimate for
Explanation of Solution
Calculation:
The given information is that a random sample of 20 items is drawn from a population whose standard deviation is unknown. The sample mean is 270 and sample standard deviation is 20.
Since, the population standard deviation is unknown; the sampling distribution is t-distribution.
The degrees of freedom for the test is 19
Procedure the value of Student’s t using Appendix D:
- Go through the row corresponding to the degrees of freedom 19 in Appendix D of student’s t critical values.
- Go through the row corresponding to 19 and column corresponding to the confidence level 0.95.
- Obtain the value corresponding to (19, 0.95) from the table.
Thus, the value
Substitute
Thus, the 95% confidence interval estimate for
c.

Using the value of student’s t from Appendix D, construct a 95% confidence interval estimate for
Answer to Problem 21SE
The 95% confidence interval estimate for
Explanation of Solution
Calculation:
The given information is that a random sample of 40 items is drawn from a population whose standard deviation is unknown. The sample mean is 270 and sample standard deviation is 20.
Since, the population standard deviation is unknown; the sampling distribution is t-distribution.
The degrees of freedom for the test is 39
Procedure the value of Student’s t using Appendix D:
- Go through the row corresponding to the degrees of freedom 39 in Appendix D of student’s t critical values.
- Go through the row corresponding to 39 and column corresponding to the confidence level 0.95.
- Obtain the value corresponding to (39, 0.95) from the table.
Thus, the value
Substitute
Thus, the 95% confidence interval estimate for
d.

Explain how the intervals changes as the sample size increases.
Explanation of Solution
As the sample size increases the width of the confidence interval decreases. From the results obtained in parts (a), (b) and (c), the 95% confidence interval for a sample of size 10 is wider than confidence interval for a sample of size 20 which is again wider l for a sample of size 40. A greater confidence implies a greater margin of error or there will be a loss of precision. Since the confidence interval becomes narrower, precise values can be obtained.
Thus, as the confidence level decreases the sample size increases.
Want to see more full solutions like this?
Chapter 8 Solutions
APPLIED STAT.IN BUS.+ECONOMICS
- Find the critical value for a left-tailed test using the F distribution with a 0.025, degrees of freedom in the numerator=12, and degrees of freedom in the denominator = 50. A portion of the table of critical values of the F-distribution is provided. Click the icon to view the partial table of critical values of the F-distribution. What is the critical value? (Round to two decimal places as needed.)arrow_forwardA retail store manager claims that the average daily sales of the store are $1,500. You aim to test whether the actual average daily sales differ significantly from this claimed value. You can provide your answer by inserting a text box and the answer must include: Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value. Showing the calculation is a must. If calculation is missing,so please provide a step by step on the answers Numerical answers in the yellow cellsarrow_forwardShow all workarrow_forward
- Show all workarrow_forwardplease find the answers for the yellows boxes using the information and the picture belowarrow_forwardA marketing agency wants to determine whether different advertising platforms generate significantly different levels of customer engagement. The agency measures the average number of daily clicks on ads for three platforms: Social Media, Search Engines, and Email Campaigns. The agency collects data on daily clicks for each platform over a 10-day period and wants to test whether there is a statistically significant difference in the mean number of daily clicks among these platforms. Conduct ANOVA test. You can provide your answer by inserting a text box and the answer must include: also please provide a step by on getting the answers in excel Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value.arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning


