
Concept explainers
Tax-deferred annuities work like this: If, for example, you plan to set aside $400 per month for your retirement in 30 years in a tax-deferred plan, the $400 is not taxed now, so all of the $400 is invested each month. In a non deferred plan, the $400 is first taxed and then the remainder is invested. So, if your tax bracket is 25%, after you pay taxes, you would have only 75% of the $400 to invest each month. However, in the tax-deferred plan, all of your money is taxed when you withdraw the money. In the non deferred plan, only the interest that you have earned is taxed.
In Exercises 49-54, we give the amount you are setting aside in an ordinary annuity each month, your current tax rate, the number of years you will contribute to the annuity, and your tax rate when you begin withdrawing from the annuity. Answer the following questions for each situation:
a. Find the value of the tax-deferred and the non deferred accounts.
b. Calculate the interest that was earned in both accounts. This will be the value of the account minus the payments you made.
c. If you withdraw all money from each account and pay the relevant taxes, which account is better and by how much?
Monthly Payment | Number of Years | Annual Interest Rate | Current Tax Rate | Future Tax Rate |
$500 | 35 | 3.4% | 25% | 30% |

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
EBK MATHEMATICS ALL AROUND
- Please explain how come of X2(n).arrow_forwardNo chatgpt pls will upvotearrow_forwardFind all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forward
- https://www.hawkeslearning.com/Statistics/dbs2/datasets.htmlarrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.arrow_forward
- Let A = {a, b, c, d}, B = {a,b,c}, and C = {s, t, u,v}. Draw an arrow diagram of a function for each of the following descriptions. If no such function exists, briefly explain why. (a) A function f : AC whose range is the set C. (b) A function g: BC whose range is the set C. (c) A function g: BC that is injective. (d) A function j : A → C that is not bijective.arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective. why?(b) Determine if f is surjective. why?(c) Based upon (a) and (b), is f bijective? why?arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective.(b) Determine if f is surjective. (c) Based upon (a) and (b), is f bijective?arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





