Concept explainers
Conversion of BCD (8421) numbers 11 0110 0101.0000 0111 to a decimal numbers.
![Check Mark](/static/check-mark.png)
Answer to Problem 21A
Decimal numbers is 365.0710.
Explanation of Solution
Given information:
A BCD (8421) numbers 11 0110 0101.0000 0111.
Calculation:
BCD number system uses 2 symbols: The numbers are 0 and 1.
And a decimal number system uses the number 10 as its base i.e. it has 10 symbols; decimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
BCD numbers are represented as from decimal number
BCD (8421) | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 |
Decimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Each decimal digit consists of 4 BCD digits.
For example decimal number 9 is equal to BCD number 1001.
For converting integer part of BCD numbers into decimal numbers write down the BCD numbers and represent four binary digits from right by its decimal digit from the table.
Then combine all the digits together.
For converting fractional part of BCD numbers into decimal numbers write down the BCD numbers and represent four binary digits from left by its decimal digit from the table.
Then combine all the digits together.
Finally decimal number is combination of both integer and fractional part.
Decimal digits are equal to the summation of 2n where n = 0, 1, 2 and 3 (position from right)
For example 9 = 23+20; in this example 21 and 22 is not exist so at position 1 and 2 binary digit is zero and at position 0 and 3 binary digit is one; for example decimal of BCD 1001 is
The decimal number is equal to the summation of binary digits dn × 2n
Divide the binary number into block of four digits if four digits are not exist the add additional zero in binary number for example 11 is written as 0011 and .11 is written as .1100
Decimal of BCD number 11 0110 0101.0000 0111 is (Starting from right for integer part and starting from left for fractional part)
Want to see more full solutions like this?
Chapter 84 Solutions
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
- Consider the weighted voting system [16: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forwardNo chatgpt pls willarrow_forwardConsider the weighted voting system [9: 7, 4, 1]Find the Shapley-Shubik power distribution of this weighted voting system.List the power for each player as a fraction:P1: P2: P3:arrow_forward
- Consider the weighted voting system [11: 7, 4, 1]Find the Shapley-Shubik power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3:arrow_forwardConsider the weighted voting system [18: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forwardConsider the weighted voting system [18: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1 = P2 = P3 = P4 =arrow_forward
- Consider the weighted voting system [18: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forwardConsider the weighted voting system [18: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forwardFind the Banzhaf power distribution of the weighted voting system[26: 19, 15, 11, 6]Give each player's power as a fraction or decimal value P1 = P2 = P3 = P4 =arrow_forward
- solve it using augmented matrix. Also it is homeworkarrow_forward4. Now we'll look at a nonhomogeneous example. The general form for these is y' + p(x)y = f(x). For this problem, we will find solutions of the equation +2xy= xe (a) Identify p(x) and f(x) in the equation above. p(x) = f(x) = (b) The complementary equation is y' + p(x)y = 0. Write the complementary equation. (c) Find a solution for the complementary equation. We'll call this solution y₁. (You only need one particular solution, so you can let k = 0 here.) Y1 = (d) Check that y₁ satisfies the complementary equation, in other words, that y₁+ p(x)y₁ = 0.arrow_forwarddata managementarrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780395977224/9780395977224_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780998625713/9780998625713_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168994/9781938168994_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)