
Concept explainers
Wilson’s interval: The small-sample method for constructing a confidence interval is a simple, approximation of a more complicated interval known as Wilson’s interval. Let
Wilson’s confidence interval for p is given by
Approximation depends on the level: The small-sample method is a good approximation to Wilson’s method for all confidence levels commonly used in practice, but is best when is close to 2. Refer to Exercise 41.
- Use Wilson’s method to construct a 90% confidence interval, a 95% confidence interval, and a 99% confidence Interval for the proportion of tenth graders who plan to attend college.
- Use the small-sample method to construct a 90% confidence interval, a 95% confidence interval, and a 99% confidence interval for the proportion of tenth graders who plan to attend college.
- For which level is the small-sample method the closest to Wilson’s method? Explain why this is the case.
(a)

Use Wilson’s method to construct the confidence interval.
Answer to Problem 43E
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Explanation of Solution
The Wilson’s method formula is given,
Here, p is the probability value and z are critical value
Then compute the Wilson’s confidence interval method
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Program:
clc clear close all n=15; x=9; p=9/15; z1=1.645; z2=1.96; z3=2.575; up90=p+(z1/(2*n))+z1*sqrt((p*(1-p)/n)+((z1)^2/(4*n^2))); up95=p+(z2/(2*n))+z2*sqrt((p*(1-p)/n)+((z2)^2/(4*n^2))); up99=p+(z3/(2*n))+z3*sqrt((p*(1-p)/n)+((z3)^2/(4*n^2))); div90=1+(z1^2/n); div95=1+(z2^2/n); div99=1+(z3^2/n); w90p=up90/div90 w95p=up95/div95 w99p=up99/div99 low90=p+(z1/(2*n))-z1*sqrt((p*(1-p)/n)+((z1)^2/(4*n^2))); low95=p+(z2/(2*n))-z2*sqrt((p*(1-p)/n)+((z2)^2/(4*n^2))); low99=p+(z3/(2*n))-z3*sqrt((p*(1-p)/n)+((z3)^2/(4*n^2))); w90n=low90/div90 w95n=low95/div95 w99n=low99/div99
(b)

Using small-sample method to construct the confidence interval.
Answer to Problem 43E
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Explanation of Solution
The small-sample method formula is given,
Here, p is the probability value and z are critical value
Then compute the Wilson’s confidence interval method
At 90% confidence interval the probability value is
At 95% confidence interval the probability value is
At 99% confidence interval the probability value is
Program:
clc clear close all n=15; x=9; p=9/15; z1=1.645; z2=1.96; z3=2.575; up90=p+z1*sqrt((p*(1-p)/(n+4))) up95=p+z2*sqrt((p*(1-p)/(n+4))) up99=p+z3*sqrt((p*(1-p)/(n+4))) low90=p-z1*sqrt((p*(1-p)/(n+4))) low95=p-z2*sqrt((p*(1-p)/(n+4))) low99=p-z3*sqrt((p*(1-p)/(n+4)))
(c)

Explain at which interval Wilson’s method close to small-sample method.
Answer to Problem 43E
At the 90 % interval Wilson’s method close to small-sample method.
The Wilson’s method shows
At 90% confidence interval the probability value is
The Small-sample method shows
At 90% confidence interval the probability value is
Explanation of Solution
Wilson’s method formula
The small-sample formula
Want to see more full solutions like this?
Chapter 8 Solutions
Elementary Statistics (Text Only)
- Given your fitted regression line, what would be the residual for snake #5 (10 C)?arrow_forwardCalculate the 95% confidence interval around your estimate of r using Fisher’s z-transformation. In your final answer, make sure to back-transform to the original units.arrow_forwardCalculate Pearson’s correlation coefficient (r) between temperature and heart rate.arrow_forward
- A researcher wishes to estimate, with 90% confidence, the population proportion of adults who support labeling legislation for genetically modified organisms (GMOs). Her estimate must be accurate within 4% of the true proportion. (a) No preliminary estimate is available. Find the minimum sample size needed. (b) Find the minimum sample size needed, using a prior study that found that 65% of the respondents said they support labeling legislation for GMOs. (c) Compare the results from parts (a) and (b). ... (a) What is the minimum sample size needed assuming that no prior information is available? n = (Round up to the nearest whole number as needed.)arrow_forwardThe table available below shows the costs per mile (in cents) for a sample of automobiles. At a = 0.05, can you conclude that at least one mean cost per mile is different from the others? Click on the icon to view the data table. Let Hss, HMS, HLS, Hsuv and Hмy represent the mean costs per mile for small sedans, medium sedans, large sedans, SUV 4WDs, and minivans respectively. What are the hypotheses for this test? OA. Ho: Not all the means are equal. Ha Hss HMS HLS HSUV HMV B. Ho Hss HMS HLS HSUV = μMV Ha: Hss *HMS *HLS*HSUV * HMV C. Ho Hss HMS HLS HSUV =μMV = = H: Not all the means are equal. D. Ho Hss HMS HLS HSUV HMV Ha Hss HMS HLS =HSUV = HMVarrow_forwardQuestion: A company launches two different marketing campaigns to promote the same product in two different regions. After one month, the company collects the sales data (in units sold) from both regions to compare the effectiveness of the campaigns. The company wants to determine whether there is a significant difference in the mean sales between the two regions. Perform a two sample T-test You can provide your answer by inserting a text box and the answer must include: Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value. (2 points = 0.5 x 4 Answers) Each of these is worth 0.5 points. However, showing the calculation is must. If calculation is missing, the whole answer won't get any credit.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





