Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.3, Problem 1PPA
Practice ProblemATTEMPT
Using data from Figures 7.8 and 7.10 and Appendix 2, calculate the lattice energy of rubidium iodide (RbI).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please correct answer and don't use hand rating
The diagrams represent oxide compounds
of the group 2A metals. Which picture
represents the compound with the largest
lattice energy?
(1) picture (a)
(2) picture (b)
(3) picture (c)
(4) picture (d
c) TABLE 2 shows several selected thermochemical data.
TABLE 2
AH (kJ mol-')
Entahlpy
Lattice energy of sodium oxide
Enthalpy of formation of sodium oxide
First ionisation energy of sodium
First electron affinity of oxygen
Second electron affinity of oxygen
Enthalpy of atomization of oxygen
-2570.0
-415.9
+495.9
-141.0
+791.0
+247.0
Based on the data in TABLE 2,
i. construct the Born-Haber cycle.
ii.
calculate the enthalpy of atomisation of sodium
Chapter 8 Solutions
Chemistry
Ch. 8.1 - Practice ProblemATTEMPT Write Lewis dot symbols...Ch. 8.1 - Practice Problem BUILD
Indicate the charge on...Ch. 8.1 - Practice ProblemCONCEPTUALIZE For each of the...Ch. 8.1 - 8.1.1 Using only a periodic table, determine the...Ch. 8.1 - 8.1.2 Using only a periodic table, determine the...Ch. 8.1 - To which group does element X belong if its Lewis...Ch. 8.1 - Prob. 4CPCh. 8.2 - Prob. 1PPACh. 8.2 - Practice ProblemBUILD Arrange the compounds NaF,...Ch. 8.2 - Practice ProblemCONCEPTUALIZE Common ions of four...
Ch. 8.2 - 8.2.1 Will the lattice energy of KF be larger or...Ch. 8.2 - 8.2.2 Using the following data, calculate the...Ch. 8.2 - 8.2.3 Lattice energies are graphed for three...Ch. 8.3 - Practice ProblemATTEMPT Using data from Figures...Ch. 8.3 - Prob. 1PPBCh. 8.3 - Prob. 1PPCCh. 8.4 - Practice Problem ATTEMPT Classify the following...Ch. 8.4 - Prob. 1PPBCh. 8.4 - Prob. 1PPCCh. 8.4 - In which of the following molecules are the bonds...Ch. 8.4 - Using data from Table 8.5, calculate the magnitude...Ch. 8.4 - Prob. 3CPCh. 8.4 - Prob. 4CPCh. 8.5 - Prob. 1PPACh. 8.5 - Prob. 1PPBCh. 8.5 - Prob. 1PPCCh. 8.5 - Identify the correct Lewis structure for formic...Ch. 8.5 - Identity the correct Lewis structure for hydrogen...Ch. 8.6 - Prob. 1PPACh. 8.6 - Prob. 1PPBCh. 8.6 - Prob. 1PPCCh. 8.6 - Determine the formal charges on H, C, and N,...Ch. 8.6 - 8.6.2 Which of the Lewis structures shown is most...Ch. 8.7 - Prob. 1PPACh. 8.7 - Practice ProblemBUILD Draw the Lewis structure for...Ch. 8.7 - Practice Problem CONCEPTUALIZE
Of the three Lewis...Ch. 8.7 - Indicate which of the following are resonance...Ch. 8.7 - 8.7.2 How many resonance structures can be drawn...Ch. 8.8 - Prob. 1PPACh. 8.8 - Prob. 1PPBCh. 8.8 - Practice Problem CONCEPTUALIZE
The hypothetical...Ch. 8.8 - In which of the following species does the central...Ch. 8.8 - Prob. 2CPCh. 8.8 - In which species does the central atom obey the...Ch. 8.8 - 8.8.4 How many lone pairs are there on the central...Ch. 8.9 - Prob. 1PPACh. 8.9 - Practice ProblemBUILD Use Lewis structures and...Ch. 8.9 - Prob. 1PPCCh. 8.9 - 8.9.1 Use data from Table 8.6 to estimate for the...Ch. 8.9 - Use data from Table 8.6 to estimate Δ H rxn for...Ch. 8.9 - Use bond enthalpies to determine Δ H rxn for the...Ch. 8.9 - Prob. 4CPCh. 8.10 - Practice ProblemATTEMPT Draw all possible...Ch. 8.10 - Prob. 1PPBCh. 8.10 - Practice ProblemCONCEPTUALIZE The Lewis structure...Ch. 8.11 - Prob. 1PPACh. 8.11 - Prob. 1PPBCh. 8.11 - Prob. 1PPCCh. 8.12 - Prob. 1PPACh. 8.12 - Prob. 1PPBCh. 8.12 - Prob. 1PPCCh. 8.13 - Prob. 1PPACh. 8.13 - Practice Problem BUILD
Using the following...Ch. 8.13 - Prob. 1PPCCh. 8 - 8.1
Which of the following atoms must always obey...Ch. 8 - Prob. 2KSPCh. 8 - Prob. 3KSPCh. 8 - Prob. 4KSPCh. 8 - What is a Lewis dot symbol? What elements do we...Ch. 8 - Use the second member of each group from Group 1A...Ch. 8 - Prob. 3QPCh. 8 - 8.4 Write Lewis dot symbols for the following...Ch. 8 - Write Lewis dot symbols for the following atoms...Ch. 8 - Prob. 6QPCh. 8 - Prob. 7QPCh. 8 - Name five metals and five nonmetals that are very...Ch. 8 - Prob. 9QPCh. 8 - Prob. 10QPCh. 8 - Prob. 11QPCh. 8 - The term molar mass was introduced in Chapter 3....Ch. 8 - Prob. 13QPCh. 8 - Prob. 14QPCh. 8 - Prob. 15QPCh. 8 - Explain how the lattice energy of an ionic...Ch. 8 - Prob. 17QPCh. 8 - Prob. 18QPCh. 8 - 8.19 Use the Born-Haber cycle outlined in Section...Ch. 8 - Calculate the lattice energy of CaCl 2 . Use data...Ch. 8 - An ionic bond is formed between a cation A + and...Ch. 8 - Prob. 22QPCh. 8 - Use Lewis dot symbols to show the transfer of...Ch. 8 - Write the Lewis dot symbols of the reactants and...Ch. 8 - 8.25 Describe Lewis’s contribution to our...Ch. 8 - Prob. 26QPCh. 8 - Prob. 27QPCh. 8 - Prob. 28QPCh. 8 - Prob. 29QPCh. 8 - Prob. 30QPCh. 8 - Prob. 31QPCh. 8 - Prob. 32QPCh. 8 - Prob. 33QPCh. 8 - Define electronegativity, and explain the...Ch. 8 - Prob. 35QPCh. 8 - Prob. 36QPCh. 8 - Prob. 37QPCh. 8 - Using information in Table 8.5. calculate the...Ch. 8 - List the following bonds in order of increasing...Ch. 8 - Classify the following bonds as covalent, polar...Ch. 8 - 8.41 Classify the following bonds as covalent,...Ch. 8 - 8.42 List the following bonds in order of...Ch. 8 - Prob. 43QPCh. 8 - Prob. 44QPCh. 8 - Prob. 45QPCh. 8 - Prob. 46QPCh. 8 - Draw Lewis structures for the following molecules...Ch. 8 - Draw Lewis structures for the following molecules:...Ch. 8 - Prob. 49QPCh. 8 - Prob. 50QPCh. 8 - 8.51 Draw Lewis structures for the following ions:...Ch. 8 - Draw Lewis structures for the following ions: (a)...Ch. 8 - Prob. 53QPCh. 8 - Prob. 54QPCh. 8 - Prob. 55QPCh. 8 - Prob. 56QPCh. 8 - Prob. 57QPCh. 8 - 8.58 Draw three resonance structures for the...Ch. 8 - Prob. 59QPCh. 8 - Prob. 60QPCh. 8 - Draw three reasonable resonance structures for the...Ch. 8 - Draw three resonance structures for the molecule N...Ch. 8 - Prob. 63QPCh. 8 - Prob. 64QPCh. 8 - Prob. 65QPCh. 8 - Prob. 66QPCh. 8 - Prob. 67QPCh. 8 - Prob. 68QPCh. 8 - Prob. 69QPCh. 8 - The AlI 3 molecule has an incomplete octet around...Ch. 8 - Prob. 71QPCh. 8 - Prob. 72QPCh. 8 - 8.73 Write a Lewis structure for Does this...Ch. 8 - Prob. 74QPCh. 8 - Prob. 75QPCh. 8 - 8.76 Draw two resonance structures for the bromate...Ch. 8 - Prob. 77QPCh. 8 - What is bond enthalpy? Bond enthalpies of...Ch. 8 - Prob. 79QPCh. 8 - Prob. 80QPCh. 8 - Prob. 81QPCh. 8 - Prob. 82QPCh. 8 - For the reaction 2 C 2 H 6 ( g ) + 7 O 2 ( g ) → 4...Ch. 8 - Prob. 84QPCh. 8 - 8.85. Use average bond enthalpies from Table 8.6...Ch. 8 - Prob. 86APCh. 8 - Prob. 87APCh. 8 - Prob. 88APCh. 8 - Prob. 89APCh. 8 - Prob. 90APCh. 8 - 8.91 Describe some characteristics of an ionic...Ch. 8 - Prob. 92APCh. 8 - Prob. 93APCh. 8 - Prob. 94APCh. 8 - Prob. 95APCh. 8 - Prob. 96APCh. 8 - Prob. 97APCh. 8 - Prob. 98APCh. 8 - Prob. 99APCh. 8 - Prob. 100APCh. 8 - Prob. 101APCh. 8 - Prob. 102APCh. 8 - Prob. 103APCh. 8 - Prob. 104APCh. 8 - Which of the following species are isoelectronic:...Ch. 8 - Prob. 106APCh. 8 - 8.107 Draw two resonance structures for each...Ch. 8 - The following species have been detected in...Ch. 8 - The amide ion ( NH 2 − ) is a Brø�nsted base. Use...Ch. 8 - Prob. 110QPCh. 8 - The triiodide ion ( I 3 − ) in which the I atoms...Ch. 8 - Prob. 112APCh. 8 - In 1999, an unusual cation containing only...Ch. 8 - Prob. 114APCh. 8 - Prob. 115APCh. 8 - Prob. 116APCh. 8 - In the gas phase, aluminum chloride exists as a...Ch. 8 - Prob. 118APCh. 8 - Calculate Δ H º for the reaction H 2 ( g ) + I 2 (...Ch. 8 - Draw Lewis structures for the following organic...Ch. 8 - Prob. 121APCh. 8 - Prob. 122APCh. 8 - Prob. 123APCh. 8 - Write three resonance structures for (a) the...Ch. 8 - Prob. 125APCh. 8 - Prob. 126APCh. 8 - Prob. 127APCh. 8 - Prob. 128APCh. 8 - Prob. 129APCh. 8 - Prob. 130APCh. 8 - Prob. 131APCh. 8 - Among the common inhaled anesthetics are:...Ch. 8 - Prob. 133QPCh. 8 - Prob. 134QPCh. 8 - Prob. 135QPCh. 8 - 8.136 Using this and data from Appendix 2,...Ch. 8 - Prob. 137QPCh. 8 - Prob. 138APCh. 8 - Prob. 139APCh. 8 - Prob. 140APCh. 8 - Prob. 141APCh. 8 - Prob. 142APCh. 8 - Prob. 143APCh. 8 - Although nitrogen dioxide ( NO 2 ) is a stable...Ch. 8 - 8.145 The chlorine nitrate molecule is believed...Ch. 8 - The hydroxyl radical ( OH ) plays an important...Ch. 8 - Prob. 147APCh. 8 - Prob. 148APCh. 8 - Prob. 1SEPPCh. 8 - 2. Use formal charges to choose the best of the...Ch. 8 - Prob. 3SEPPCh. 8 - Prob. 4SEPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Order the following ionic compounds in increasing lattice energy strength [1 having the smallest lattice energy and 5 having the largest lattice energy) 1. (Choose ) (Choose lithium fluoride magnesium selenide potassium fluoride aluminum phosphide potassium sulfide (Choose) 3. 4 [Choose] [Choose]arrow_forwardPredict which one of thefollowing orderings of lattice energy is correct for theseionic compounds.(a) NaCl > MgO > CsI > ScN (b) ScN > MgO > NaCl > CsI(c) NaCl > CsI > ScN > CaO a(d) MgO > NaCl > ScN > CsI(e) ScN > CsI > NaCl > MgOarrow_forward(11 of 12 By how much energy is the system stabilized by having the two H atoms 74 pm from each other compared to being far apart? kJ/molarrow_forward
- Please send me the question in 30 minutes it's very urgent plzarrow_forwardQuestion Is the lattice energy of CaO higher than that of CO? No They have the same lattice energy Yes They do not have lattice energyarrow_forwardCompare the magnitude of the lattice energy for each of the following two ion pairs. (a) Ni²+ and O²- separated by a distance of 220 pm (b) Mn²+ and O²- separated by a distance of 431 pmarrow_forward
- Which of these statements are true? (Select all that apply) lonic compounds are stable. Lattice energy is the change in energy when an ionic solid is separated into isolated ions in the gas phase. O Compounds are stable if it is difficult to break them into their component pieces. Lattice energy is highly exothermic. O The formation of NaCl(s) from the elements requires a large input of energy.arrow_forwardGive correct typed answer with explaination- Q) Which of the following pairs of atoms would form an ionic bond? a) C and S b) Sr and O c) AI and CI d) C and N e) none of the above Q) Arrange the following compounds in order of increasing magnitude of lattice energy: KCI, SrO, RbBr, CaOarrow_forwardN Calculate the lattice enthalpy for RbCl. You will need the following information: Species A,H, kJ/mol Rb(e) RbCl() CI(g) Enthalpy of ionization for Rb(g) is 403.0 kl/mol; electron attachment enthalpy for Cl(g) is-349.0 kJ/mol Lattice enthalpy kJ/mol Submit Answer *** 1 43 E D 80.9 -435.4 121.3 Try Another Version 80 54 R F di a 25 2 item attempts remaining T G ‹6 P FA Y & 29 7 H 8 #7 U 8 Dil FA - 6 8 Karrow_forward
- How many valence electrons does IOF5 have? A) 34 B) 46 C) 48 D) 50 A student chemist hears the following explanation: "an object with small specific heat can be heated or cooled quickly as its temperature changes by small amount of heat. It is interesting that heating or cooling an object with large specific heat takes longer". The understanding is that embraces the amount of heat required for raising temperature of an object per FIDE unit mass by A) boiling point, specific heat capacity B) melting point, unit temperature C) specific heat capacity, unit temperature D) freezing point, specific heat capacityarrow_forwardUse the followving data to estimate AH for lithium chloride, . i(s) + Cl,(9) → LICI(s) 2. (6 Lattice eneIgy S29 kJimol Ionization for Li energy Electron affinity of Cl Bond energy of Cl2 Enthalpy of sublimation for Li 520.kJ/mol -349kJ/mol 239 kJ mol 166 kJ/mol AH - J/molarrow_forwardQuestion 6 Which statement below is true? Hint: Consider how properties of a covalent bond are measured. O One mole of hydrogen atoms is more stable than one mole of hydrogen molecules, O As the distance between the nuclei decreases when forming a covalent bond, there is a corresponding decrease in the probability of finding both electrons near either nucleus O The bond energy is the minimum energy required to bring about pairing of the electrons in a covalent bond. O The buildup of electron density between two atoms repels each nuclei, making them less stable O The two electrons in a single covalent bond must be paired as required by the Pauli exclusion principle. Nexarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY