
Single Variable Calculus
8th Edition
ISBN: 9781305266636
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.2, Problem 36E
a)
To determine
To prove: the surface area of a zone of a sphere that lies between two parallel planes is
b)
To determine
To prove: the surface area of a zone of a cylinder is same as the surface area of zone of a sphere in part (a).
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Question 1. (10 points)
A researcher is studying tumours in mice. The growth rate for the volume of the tumour V(t) in cm³ is given by
dV
=
1.45V(2 In(V+1)).
dt
(a) (4 pts) Find all the equilibria and determine their stability using the stability condition.
(b) (2 pts) Draw the phase plot f(V) versus V where f(V) = V'. You may find it helpful to use Desmos or Wolfram Alpha to plot the graph of
f(V) versus V (both are free to use online), or you can plot it by hand if you like. On the plot identify each equilibrium as stable or unstable.
(c) (4 pts) Draw direction arrows for the case where the tumour starts at size 3cm³ and for the case where the tumour starts at size 9cm³. Explain
in biological terms what happens to the size of each of these tumours at time progresses.
For the system consisting of the two planes:plane 1: -x + y + z = 0plane 2: 3x + y + 3z = 0a) Are the planes parallel and/or coincident? Justify your answer. What does this tell you about the solution to the system?b) Solve the system (if possible). Show a complete solution. If there is a line of intersection express it in parametric form.
Question 2: (10 points) Evaluate the definite integral.
Use the following form of the definition of the integral to evaluate the integral:
Theorem: Iff is integrable on [a, b], then
where Ax = (ba)/n and x₂ = a + i^x.
You might need the following formulas.
IM³
L² (3x²
(3x²+2x-
2x - 1)dx.
n
[f(z)dz lim f(x)Az
a
n→∞
i=1
n(n + 1)
2
n
i=1
n(n+1)(2n+1)
6
Chapter 8 Solutions
Single Variable Calculus
Ch. 8.1 - Use the arc length formula (3) to find the length...Ch. 8.1 - Use the arc length formula to find the length of...Ch. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Find the exact length of the curve. 9. y = 1 +...Ch. 8.1 - Find the exact length of the curve. 10. 36y2 = (x2...
Ch. 8.1 - Find the exact length of the curve. 11....Ch. 8.1 - Find the exact length of the curve. 12....Ch. 8.1 - Find the exact length of the curve. 13....Ch. 8.1 - Find the exact length of the curve. 14. y = ln(cos...Ch. 8.1 - Find the exact length of the curve. 15. y = ln(sec...Ch. 8.1 - Find the exact length of the curve. 16....Ch. 8.1 - Find the exact length of the curve. 17....Ch. 8.1 - Find the exact length of the curve. 18....Ch. 8.1 - Find the exact length of the curve. 19....Ch. 8.1 - Find the exact length of the curve. 20. y = 1 ex,...Ch. 8.1 - Find the length of the arc of the curve from point...Ch. 8.1 - Find the length of the arc of the curve from point...Ch. 8.1 - Graph the curve and visually estimate its length....Ch. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 33ECh. 8.1 - (a) Sketch the curve y3 = x2. (b) Use Formulas 3...Ch. 8.1 - Find the arc length function for the curve y =...Ch. 8.1 - (a) Find the arc length function for the curve y =...Ch. 8.1 - Find the arc length function for the curve...Ch. 8.1 - The arc length function for a curve y = f(x),...Ch. 8.1 - Prob. 39ECh. 8.1 - A steady wind blows a kite due west. The kites...Ch. 8.1 - A hawk flying at 15 m/s at an altitude of 180 m...Ch. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - (a) The figure shows a telephone wire hanging...Ch. 8.1 - Prob. 45ECh. 8.1 - The curves with equations x + y = l , n = 4, 6, 8,...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - Prob. 7ECh. 8.2 - Find the exact area of the surface obtained by...Ch. 8.2 - Prob. 9ECh. 8.2 - Find the exact area of the surface obtained by...Ch. 8.2 - Prob. 11ECh. 8.2 - Find the exact area of the surface obtained by...Ch. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - The given curve is rotated about the y-axis. Find...Ch. 8.2 - The given curve is rotated about the y-axis. Find...Ch. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - If the region R=(x,y)x1,0y1/x is rotated about the...Ch. 8.2 - If the infinite curve y = ex, x 0, is rotated...Ch. 8.2 - Prob. 29ECh. 8.2 - A group of engineers is building a parabolic...Ch. 8.2 - (a) The ellipsex2a2+y2b2=1abis rotated about the...Ch. 8.2 - Prob. 32ECh. 8.2 - If the curve y = f(x), a x b, is rotated about...Ch. 8.2 - Prob. 35ECh. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Formula 4 is valid only when f(x) 0. Show that...Ch. 8.3 - An aquarium 5 ft long, 2 ft wide, and 3 ft deep is...Ch. 8.3 - A tank is 8 m long, 4 m wide, 2 m high, and...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A milk truck carries milk with density 64.6 lb/ft3...Ch. 8.3 - A trough is filled with a liquid of density 840...Ch. 8.3 - A vertical dam has a semicircular gate as shown in...Ch. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - A swimming pool is 20 ft wide and 40 ft long and...Ch. 8.3 - Prob. 18ECh. 8.3 - A metal plate was found submerged vertically in...Ch. 8.3 - Prob. 20ECh. 8.3 - Point-masses mi are located on the x-axis as...Ch. 8.3 - Point-masses mi are located on the x-axis as...Ch. 8.3 - The masses mi are located at the points Pi. Find...Ch. 8.3 - Prob. 24ECh. 8.3 - Sketch the region bounded by the curves, and...Ch. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - Sketch the region bounded by the curves, and...Ch. 8.3 - Prob. 29ECh. 8.3 - Prob. 30ECh. 8.3 - Find the centroid of the region bounded by the...Ch. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - Calculate the moments Mx and My and the center of...Ch. 8.3 - Calculate the moments Mx and My and the center of...Ch. 8.3 - Use Simpsons Rule to estimate the centroid of the...Ch. 8.3 - Find the centroid of the region bounded by the...Ch. 8.3 - Prob. 38ECh. 8.3 - Prove that the centroid of any triangle is located...Ch. 8.3 - Find the centroid of the region shown, not by...Ch. 8.3 - Find the centroid of the region shown, not by...Ch. 8.3 - Prob. 42ECh. 8.3 - Prob. 43ECh. 8.3 - Prob. 44ECh. 8.3 - Prob. 45ECh. 8.3 - Prob. 46ECh. 8.3 - Prob. 47ECh. 8.3 - The Second Theorem of Pappus is in the same spirit...Ch. 8.3 - Prob. 49ECh. 8.3 - Prob. 50ECh. 8.3 - Prob. 51ECh. 8.4 - The marginal cost function C(x) was defined to be...Ch. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - If a supply curve is modeled by the equation p =...Ch. 8.4 - In a purely competitive market, the price of a...Ch. 8.4 - Prob. 9ECh. 8.4 - A camera company estimates that the demand...Ch. 8.4 - Prob. 11ECh. 8.4 - A movie theater has been charging 10.00 per person...Ch. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - A hot, wet summer is causing a mosquito population...Ch. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - The dye dilution method is used to measure cardiac...Ch. 8.4 - Prob. 22ECh. 8.4 - The graph of the concentration function c(t) is...Ch. 8.5 - Let f (x) be the probability density function for...Ch. 8.5 - Let f(t) be the probability density function for...Ch. 8.5 - Prob. 3ECh. 8.5 - The density function f(x)=e3x(1+e3x)2 is an...Ch. 8.5 - Let f (x) = c/(1 + x2). (a) For what value of c is...Ch. 8.5 - Let f(x) = k (3x x2) if 0 x 3 and f(x) = 0 if x...Ch. 8.5 - Prob. 7ECh. 8.5 - (a) Explain why the function whose graph is shown...Ch. 8.5 - Show that the median waiting time for a phone call...Ch. 8.5 - (a) A type of light bulb is labeled as having an...Ch. 8.5 - Prob. 11ECh. 8.5 - The time between infection and the display of...Ch. 8.5 - REM sleep is the phase of sleep when most active...Ch. 8.5 - According to the National Health Survey, the...Ch. 8.5 - The Garbage Project at the University of Arizona...Ch. 8.5 - Boxes are labeled as containing 500 g of cereal....Ch. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8 - (a) How is the length of a curve defined? (b)...Ch. 8 - Prob. 2RCCCh. 8 - Prob. 3RCCCh. 8 - (a) What is the physical significance of the...Ch. 8 - Prob. 5RCCCh. 8 - Prob. 6RCCCh. 8 - Prob. 7RCCCh. 8 - Prob. 8RCCCh. 8 - Prob. 9RCCCh. 8 - Prob. 10RCCCh. 8 - Prob. 1RECh. 8 - Prob. 2RECh. 8 - Prob. 3RECh. 8 - Prob. 4RECh. 8 - Prob. 5RECh. 8 - Prob. 6RECh. 8 - Prob. 7RECh. 8 - Prob. 8RECh. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - A gate in an irrigation canal is constructed in...Ch. 8 - A trough is filled with water and its vertical...Ch. 8 - Find the centroid of the region shown. 13.Ch. 8 - Prob. 14RECh. 8 - Prob. 15RECh. 8 - Prob. 16RECh. 8 - Prob. 17RECh. 8 - Prob. 18RECh. 8 - Prob. 19RECh. 8 - After a 6-mg injection of dye into a heart, the...Ch. 8 - (a) Explain why the function...Ch. 8 - Lengths of human pregnancies are normally...Ch. 8 - The length of time spent waiting in line at a...Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - If a sphere of radius r is sliced by a plane whose...Ch. 8 - (a) Show that an observer at height H above the...Ch. 8 - Prob. 5PCh. 8 - The figure shows a semicircle with radius 1,...Ch. 8 - Prob. 7PCh. 8 - Consider a flat metal plate to be placed...Ch. 8 - A uniform disk with radius 1 m is to be cut by a...Ch. 8 - Prob. 10PCh. 8 - In a famous 18th-century problem, known as Buffons...Ch. 8 - Prob. 12PCh. 8 - Prob. 13P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- For the system consisting of the three planes:plane 1: -4x + 4y - 2z = -8plane 2: 2x + 2y + 4z = 20plane 3: -2x - 3y + z = -1a) Are any of the planes parallel and/or coincident? Justify your answer.b) Determine if the normals are coplanar. What does this tell you about the system?c) Solve the system if possible. Show a complete solution (do not use matrix operations). Classify the system using the terms: consistent, inconsistent, dependent and/or independent.arrow_forwardFor the system consisting of the three planes:plane 1: -4x + 4y - 2z = -8plane 2: 2x + 2y + 4z = 20plane 3: -2x - 3y + z = -1a) Are any of the planes parallel and/or coincident? Justify your answer.b) Determine if the normals are coplanar. What does this tell you about the system?c) Solve the system if possible. Show a complete solution (do not use matrix operations). Classify the system using the terms: consistent, inconsistent, dependent and/or independent.arrow_forwardOpen your tool box and find geometric methods, symmetries of even and odd functions and the evaluation theorem. Use these to calculate the following definite integrals. Note that you should not use Riemann sums for this problem. (a) (4 pts) (b) (2 pts) 3 S³ 0 3-x+9-dz x3 + sin(x) x4 + cos(x) dx (c) (4 pts) L 1-|x|dxarrow_forward
- An engineer is designing a pipeline which is supposed to connect two points P and S. The engineer decides to do it in three sections. The first section runs from point P to point Q, and costs $48 per mile to lay, the second section runs from point Q to point R and costs $54 per mile, the third runs from point R to point S and costs $44 per mile. Looking at the diagram below, you see that if you know the lengths marked x and y, then you know the positions of Q and R. Find the values of x and y which minimize the cost of the pipeline. Please show your answers to 4 decimal places. 2 Miles x = 1 Mile R 10 miles miles y = milesarrow_forwardAn open-top rectangular box is being constructed to hold a volume of 150 in³. The base of the box is made from a material costing 7 cents/in². The front of the box must be decorated, and will cost 11 cents/in². The remainder of the sides will cost 3 cents/in². Find the dimensions that will minimize the cost of constructing this box. Please show your answers to at least 4 decimal places. Front width: Depth: in. in. Height: in.arrow_forwardFind and classify the critical points of z = (x² – 8x) (y² – 6y). Local maximums: Local minimums: Saddle points: - For each classification, enter a list of ordered pairs (x, y) where the max/min/saddle occurs. Enter DNE if there are no points for a classification.arrow_forward
- Suppose that f(x, y, z) = (x − 2)² + (y – 2)² + (z − 2)² with 0 < x, y, z and x+y+z≤ 10. 1. The critical point of f(x, y, z) is at (a, b, c). Then a = b = C = 2. Absolute minimum of f(x, y, z) is and the absolute maximum isarrow_forwardThe spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,

Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY