![Elementary Statistics 2nd Edition](https://www.bartleby.com/isbn_cover_images/9781259724275/9781259724275_smallCoverImage.jpg)
Concept explainers
Mortgage rates: Following are interest rates (annual percentage rates) for a 30-year fixed rate mortgage from a sample of lenders in Macon. Georgia on June 20. 2013. It is reasonable to assume that the population is approximately normal.
- Construct a 99 confidence interval for the
mean rate. - One week earlier. The mean rate was 4.050%. A mortgage broker claims that the mean rate is now higher. Based on the confidence interest. Is this a reasonable claim? Explain.
(a)
>![Check Mark](/static/check-mark.png)
The
Answer to Problem 32E
From the above MINITAB output, the
Explanation of Solution
Given information:
Following are interest rates (annual percentage rates) for a
|
|
|
|
|
|
Population is normally distributed.
Calculation:
MINITAB is used to construct
MINITAB procedure:
Step
Step
Step
Step
Step
Step
MINITAB output:
One-Sample
From the above MINITAB output, the
(b)
>![Check Mark](/static/check-mark.png)
Whether claim made in the problem statement is contradictory to the confidence interval.
Answer to Problem 32E
No, it is a reasonable claim.
Explanation of Solution
Given information:
Following are interest rates (annual percentage rates) for a
|
|
|
|
|
|
Population is normally distributed.
One week earlier the mean rate was
A claim is made by broker that the mean rate is now higher.
Calculation:
From part
Since this interval does contain the value
Want to see more full solutions like this?
Chapter 8 Solutions
Elementary Statistics 2nd Edition
- Examine the Variables: Carefully review and note the names of all variables in the dataset. Examples of these variables include: Mileage (mpg) Number of Cylinders (cyl) Displacement (disp) Horsepower (hp) Research: Google to understand these variables. Statistical Analysis: Select mpg variable, and perform the following statistical tests. Once you are done with these tests using mpg variable, repeat the same with hp Mean Median First Quartile (Q1) Second Quartile (Q2) Third Quartile (Q3) Fourth Quartile (Q4) 10th Percentile 70th Percentile Skewness Kurtosis Document Your Results: In RStudio: Before running each statistical test, provide a heading in the format shown at the bottom. “# Mean of mileage – Your name’s command” In Microsoft Word: Once you've completed all tests, take a screenshot of your results in RStudio and paste it into a Microsoft Word document. Make sure that snapshots are very clear. You will need multiple snapshots. Also transfer these results to the…arrow_forward2 (VaR and ES) Suppose X1 are independent. Prove that ~ Unif[-0.5, 0.5] and X2 VaRa (X1X2) < VaRa(X1) + VaRa (X2). ~ Unif[-0.5, 0.5]arrow_forward8 (Correlation and Diversification) Assume we have two stocks, A and B, show that a particular combination of the two stocks produce a risk-free portfolio when the correlation between the return of A and B is -1.arrow_forward
- 9 (Portfolio allocation) Suppose R₁ and R2 are returns of 2 assets and with expected return and variance respectively r₁ and 72 and variance-covariance σ2, 0%½ and σ12. Find −∞ ≤ w ≤ ∞ such that the portfolio wR₁ + (1 - w) R₂ has the smallest risk.arrow_forward7 (Multivariate random variable) Suppose X, €1, €2, €3 are IID N(0, 1) and Y2 Y₁ = 0.2 0.8X + €1, Y₂ = 0.3 +0.7X+ €2, Y3 = 0.2 + 0.9X + €3. = (In models like this, X is called the common factors of Y₁, Y₂, Y3.) Y = (Y1, Y2, Y3). (a) Find E(Y) and cov(Y). (b) What can you observe from cov(Y). Writearrow_forward1 (VaR and ES) Suppose X ~ f(x) with 1+x, if 0> x > −1 f(x) = 1−x if 1 x > 0 Find VaRo.05 (X) and ES0.05 (X).arrow_forward
- Joy is making Christmas gifts. She has 6 1/12 feet of yarn and will need 4 1/4 to complete our project. How much yarn will she have left over compute this solution in two different ways arrow_forwardSolve for X. Explain each step. 2^2x • 2^-4=8arrow_forwardOne hundred people were surveyed, and one question pertained to their educational background. The results of this question and their genders are given in the following table. Female (F) Male (F′) Total College degree (D) 30 20 50 No college degree (D′) 30 20 50 Total 60 40 100 If a person is selected at random from those surveyed, find the probability of each of the following events.1. The person is female or has a college degree. Answer: equation editor Equation Editor 2. The person is male or does not have a college degree. Answer: equation editor Equation Editor 3. The person is female or does not have a college degree.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)